MICROFLORA INHABITING RAW SEWAGE, SECONDARY EFFLUENT AND DEWATERED SLUDGE IN IBB, YEMEN REPUBLIC الأحياء المجهرية التي تعيش في مياه المجاري والمخلفات الثانوية السائلة والوحل الجاف في محطة التنقية في إب- الجمهورية اليمنية

Document Type : Original Article

Abstract

ABSTRACT :




          The microflora of raw sewage, secondary effluent and dewatered sludge (manure) were investigated. Microbial total counts were relatively higher in raw sewage than in secondary effluent and dewatered sludge. A mongst the bacterial groups recorded in the present investigation, faecal Streptococcus, Streptococcus pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus and Escherechia Coli were found in the three substrates at 37 oC. On the other hand, Salmonella spp.were isolated fromraw sewage and secondary effluent, but Shigella spp < /em> were isolated only from raw sewage. Some of these bacterial species can produce toxins and cause infections directly or indirectly through contact with sewage sludge. The most common fungal species in the tested substrates on Sabouraud’s agar, without cyclohexamide at 28oC were: Aspergillus flavus, A. fumigatus, A. niger, Acremonium strictum, Aspergillus. terreus, A. versicolor, Cladosporium cladosporioides, C. herbarum, C. oxysporum, Gibberella fujikuroi, Cohliobolules hawaiiencsis, Fusarium solani, F. oxysporum, Penicillium chrysogenum, Geotrichium candidum and Scopulariopsis brevecaulis. On Sabouraoud’s dextrose agar with cycloheximide the most frequently isolated species were: Aspergillus flavus, A. fumigatus, A. niger, Gibberella fujikuroi and Geotrichium candidum. Some pathogenic fungi were also,isolated, but in various incidences and numbers such as Chrysosporiumtropicium C. indicum, C. parvum, Geotrichum candidum, Histoplasma capsulatum, Microsporum canis, M. gypseum and M. manginii.
تم عزل الفطريات والبکتيريا من عينات مياه المجاري الخام والمخرجات الثانوية والمواد الصلبة (الوحل الجاف) بعد التجفيف المستخدمة في هذه الدراسة من بيئات غذائية مختلفة عند درجة تحضين 37ºم للبکتيريا الممرضة و28º م. وقد تم عزل عدد من البکتيريا الممرضة والمحتملة، وکذلک عدد من الفطريات الممرضة أو التي يحتمل أن تسبب أمراض في ظروف خاصة.
وقد تم عزل البکتيريا , faecal Streptococcus, Streptococcus pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus, Escherechia Coli  ، کما تم عزل  Salmonella spp.من مياه المجاري ومن المخلفات السائلة. کما أن Shigella spp < /em>  قد عزلت من مياه المجاري فقط. عدد من البکتيريا المعزولة مسببة للأمراض ومکونة للسموم وتشکل خطورة على حياة الحيوان والإنسان، کما تم عزل عدد کبير من الفطريات من مياه الجاري ومخلفاتها السائلة والصلبة على بيئة السبرود بدون السيکلوهيسامايد عند درجة حرارة تحضين 28ºم منها:
Aspergillus flavus, A. fumigatus, A.niger, Acremonium stictum, terreus, A. versicolor,  Cladosporium cladosporoides, C. herbarum, C. oxysporum, Gibberella fujikuroi, Cohliobolules hawaiiensis, Fusarium solani, F. oxysporum, Penicillium chrysogenum, Geotrichium candidum and  Scopulariopsis brevecaulis.
وعلى بيئة السبرود مع السيکوهيکسامايد عزلت الأنواع الفطرية الآتية :
Aspergillus flavus, A. fumigatus, A. niger, Gibberella fujikuroi  and Geotrichium candidum,
وقد عزلت فطريات ممرضة بأعداد مختلفة على هذه البيئة، وهي:
Chrysosporium tropicium C. indicum, C. parvum, Geotrichum candidum, Histoplasma capculatum Microsporum  cansi, M. gypseum  and M. manginii.

Highlights

 

 

 

AUCES

 

MICROFLORA INHABITING RAW SEWAGE, SECONDARY EFFLUENT AND DEWATERED SLUDGE IN IBB,

 YEMEN REPUBLIC

Al-Zubeiry, A. H. S.

Microbiology Department, Faculty of Science, Taiz University, Yemen

 

ABSTRACT :

          The microflora of raw sewage, secondary effluent and dewatered sludge (manure) were investigated. Microbial total counts were relatively higher in raw sewage than in secondary effluent and dewatered sludge. A mongst the bacterial groups recorded in the present investigation, faecal Streptococcus, Streptococcus pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus and Escherechia Coli were found in the three substrates at 37 oC. On the other hand, Salmonella spp.were isolated fromraw sewage and secondary effluent, but Shigella spp were isolated only from raw sewage. Some of these bacterial species can produce toxins and cause infections directly or indirectly through contact with sewage sludge. The most common fungal species in the tested substrates on Sabouraud’s agar, without cyclohexamide at 28oC were: Aspergillus flavus, A. fumigatus, A. niger, Acremonium strictum, Aspergillus. terreus, A. versicolor, Cladosporium cladosporioides, C. herbarum, C. oxysporum, Gibberella fujikuroi, Cohliobolules hawaiiencsis, Fusarium solani, F. oxysporum, Penicillium chrysogenumGeotrichium candidum and Scopulariopsis brevecaulis. On Sabouraoud’s dextrose agar with cycloheximide the most frequently isolated species were: Aspergillus flavus, A. fumigatus, A. niger, Gibberella fujikuroi and Geotrichium candidum. Some pathogenic fungi were also,isolated, but in various incidences and numbers such as Chrysosporiumtropicium C. indicum, C. parvum, Geotrichum candidum, Histoplasma capsulatum, Microsporum canis, M. gypseum and M. manginii.

 

 

INTRODUCTION:

Wastewater generated from urban and rural areas after domestic use is a large source of water. It is mainly comprised of water (99,9%) together with relatively small concentrations of suspended and dissolved organic and inorganic solids (Mara and Cairncross, 1989 and UN Department of technical cooperation for development, 1985).

Among the organic substances present in sewage are carbohydrates, lignin, fats, soaps, synthetic detergents, proteins and their decomposition products, as well as various natural and synthetic organic chemicals from process industries.

Sewage sludge (wastewater) is an important source of organic matter (Stranchan., et al.,1983) and plant nutrients. Halderson and Zonz, (1978); Nell et al., (1983) found that the application of sewage sludge increased the nutrient status of the soil. It may increase agricultural production. Sewage sludge also contains pathogenic macro and microorganisms, which can give rise to potential hazard (Abderrahman and Shahlam, 1991) to the health of humans, animals and plants. The health risk associated with wastewater is a major deterrent in wastewater reuse for irrigation. Health risk are associated with pathogens, which may spread diseases through being directly or indirectly ingested into the human body (Dudley et al., 1980; WHO, 1981; 1989; FAO, 1992; Feachem et al., 1983; Shuval, 1991; and Shuval et al., 1986) and fungi (Velez and Diaz, 1985; and Bunes and Merk, 1992).

Pathogens pose the greatest threat to public health; especially when the receiving water is used for domestic recreation on agricultural purpose (Tchobanogeuos, 1979).

The agricultural value of sludge mainly derives from its nutrient content. Sludge, like other organic fertilizers, has long-term beneficial effects on the soil: organic matter contained in sewage sludge improves the physical properties of soil such as aggregate stability, water retention and infiltration, and reduce soil compactibility (Stone et al. 1998). In addition to nutritious content, the organic matter and the C/N ratio are important parameters of the sludge fertilizing potential.

There are many conditions, which may increase the health risk of wastewater reuse in agriculture. The first of these conditions is survival time of pathogenic microorganisms. The natural survival time of pathogenic organisms depends on the carrying medium and the environment. The survival time is a time during which pathogens are capable of causing diseases if they came into contact with a host under favorable condition.

The second of these conditions are  pathogenic bacteria, viruses, protozoa, nematodes and fungi capable of causing diseases which can be found in foods contaminated with sewage water(Bryan,1977; Kowal et al., 1980, and Rosas, 1984). They also can be found harmful to the soil, crops and grazing animals.

On the other hand Pathogenic microorganisms can be transferred from raw sewage and secondary effluent during the irrigation process, directly or in directly to the plants, animal and human, also make various infectious diseases.

Different authors have proved that 5 vegetables are contaminated with microorganisms, when they are irrigated with sewage water and when the soil is fertilized with manure because both usually contain great amounts of pathogenic organisms (Epstein et al., 1982 and Larkin et al., 1978), and when these vegetables are consumed, they could produce diarrhea, salmonellosis, Shigellosis, etc.(Dunlop and Wang, 1961; Kowal et al., 1980 and Rosas et al., 1984).

During the last three decades wastewater reclamation, recycling and reuse in agriculture have received much attention around the world, especially in the arid and semi-arid regions (Neis, 1984; Bouwer, 1982; Emeral and Kayser, 1984; and Madancy, 1981).

Yemen like many other countries in arid and semi-arid regions suffers; from shortage of water resources, so that reuse treated sewage in agriculture is an important question. That is because agriculture seems to be the greatest consumer of water. Annual water consumption has increased dramatically in the last twenty years due to significant social, industrial and agricultural developments. More than 90% of the current water demand is coming from non-renewable groundwater resources in the country.

 Farmers in Yemen, living near the disposal sites of urban wastewater, especially in some of the large cities such as Sana’a, Taiz, Aden, and Ibb are already practicing the reuse of non-treated or partially treated wastewater. (El-Zaemey, 1992). Several countries have produced guidelines, which regulate sewage sludge reuse on the basis of risk to the public health and the environment, however, in Yemen; such guidelines are not established yet.

 In Yemen no investigations have been carried out on the microflora of the sewage and knowledge on the distribution of pathogenic bacteria and fungi in sewage and sludge is absent. Thus, the present study is conducted on the composition, numbers and incidence of various species of bacteria and fungi inhabiting sewage before and after purification.

MATERIALS AND METHODS:

Collection of Sewage Samples:

Thirty samples of each of raw sewage, secondary effluent (500 ml each) and manure (dewatered sludge) (250 gr) were collected from Ibb sewage treatment plant. Each sample was placed in a clean bottle, which was capped tightly and transferred to the laboratory for immediatly bacteriological and mycological analyses.

Five bacterial isolation media were used namely: Nutrient agar for plate count analysis, MF, M-endobroth, MFC agar, MacKonky agar and SS agar. 0.1 ml of each of secondary effluent and raw sewage dilution was used per plate. Three plates of each medium were used for each sewage samples. The counts were calculated per 1ml of sewage, for raw and secondary effluent, and per g dry weight for manure.

Isolation and Identification of bacteria:

Bacteria were encountered using the plate count on nutrient agar.

Total Coliform (TCF) were analyzed using the membrane filtration procedure as described by the APHA (1989) and they were cultured on M-Endo broth (APHA, 1989).

Faecal Coliforms (FC) and faecal Streptococcus (FS) were analyzed using the membrane filtration procedure described by the APHA, (1989). Faecal Coliforms were cultured on M-FC agar (Difco) while faecal Streptococci were grown on m-enterococcus agar (Difco).

        Salmonella concentration was determined using a five tube most probable number (MPN) procedure. Four dilution containing 10-1/ ml, 10-2/ml, 10-3/ml and 10-4/ ml of raw sludge and Five other tubes for effluent with four dilution containing 10-1/ml, 10-2/ml, 10-3 /ml and 10-4 ml of secondary effluent were used. Samples were per-enriched in buffered peptone water (BPW) at 37oC overnight after which 10-1/mlof per-enrich culture was transferred to Rappaport-Vassilladis broth (RV). Enrichment cultures were incubated at 43oC and were subcultured to xylose – deoxycolate agar(XLD) after 24 and 48 h. Presumptive Salmonella were purified on MacConky agar without salt and were screened using biochemical and serological tests.

Isolation and Identification of fungi:

        Two isolation media were used for isolation of fungi. Sabouraoud’s dextrose agar (Moss and Mcquown, 1969) containing 40 g/l dextrose, 10 g/l peptone, 20 g agar/l, 40 mg/l Streptomycin, 20 units of Penicillin /ml and 0.05% cycloheximide (Actidione) and Sabouraoud’s dextrose agar containing 40 mg/l Streptomycin and 0.003% rose-Bengal. One ml of the appropriate of each of secondary effluent and raw sewage and manure was used per plate. Three plates were used for each sewage sample. The plates were incubated at 28oC for 7 days. The counts were calculated per 1ml of sewage.

Identification was carried out by using the taxonomic references of Raper and Fennell (1965), Domsch et al. (1980), Raper and Thom (1949); Ellis (1976); and Moubasher (1993).

 

RESULTS AND DISCUSSION:

Bacteria recovered from raw sewage, secondary effluent and manure:

The total count of bacteria in the raw sewage, secondary effluent and dewatered sludge were 8.2x 1010 C/ml, 6.7x 106 C/ml and 5.3x10C/g respectively (Table 1). The most common bacteria in the above substrates was faecal coliform. It was isolated samples constituting 9.4x10C/ml, 5.2x103 C/ml and 4.2x10C/g respectively. The results in Table (1) show also that the most common bacteria was Escherichia. Coli. It was isolated from all samples of the three substrates constituting 7.6x106, 2.8.x10C/ml and 1.2x102 C/g respectively.

Salmonella spp. were isolated from 9 and 3 samples of raw sewage and secondary effluent (2.1x102, 1.3x10 C/ml respectively).

Some authorsreported that the Salmonella spp. can infect or contaminate nearly all living vectors from insects to mammals. (WHO, 1981). Human Salmonella infections and other bacterial infections can be caused from the direct or indirect contact with sewage sludge (Pennsylvania Environmental Network, 2002, WHO, 1981 and Doyle et al., 1997).Most serotypes of Salmonella are pathogenic to humans. A common route of infection for humans is through ingestion of products contaminated with animal faeces (Woolcock, 1991).

 Shigella spp were encountered only from raw sewage (1.1x10 C/ml.). Some bacterial species were also isolated in this study from raw sewage, secondary effluent and dewatered sludge (manure). Some of them can be caused infections directly or indirectly contact with sewage sludge.

 Faecal StreptococcusStreptococcus pneumoniaStaphylococcus aureusPseudomonas aeruginosa and Bacillus cereus were also isolated in the present study from the three substrates. High bacterial count were detected in all samples of the three substrates investigated (Table 1). Faecal coliform bacteria were also detected in high numbers in tested substrates.

Some of these bacteria can produce toxins and cause infections directly or indirectly to human. The great numbers of bacterial colonies were isolated from sewage sludge (raw sewage, secondary effluent and manure, 30 samples of each) at 37°C. The most common bacteria were faecal coliform (Table 1). Simpson (1982) reported that Sewage contain the wide spectrum of Bacteria. The most common bacteria in sewage sludge are the enteric bacteria (Coliforms, Shigellae, Salmonella, etc.). Coliforme bacteria can be contain a rare strain of E.coli that is pathogenic to humans (Kirk, 2003). The typical concentration of E. coli found in untreated sewage sludge is 1000,000 wet weight/g of total solids (Smith, 2003).

The results in this study are analogous to those obtained by several workers in many parts of the world (Kirk, 2003, Smith, 2003 and Simpson, 1982). Results revealed also that the bacterial concentration is high and many of them are Pathogens. Our results in this aspect correspond with those of other authors (Smith, 2003 and WHO, 1981).

 

 


Table (1) : Total counts (TC) and number of positive samples (PS) for Bacteria isolated from 30 samples of each raw sewage (colony/ml), secondary effluent (colony/ml) and manure (colony/g).

Bacteria

Raw sewage

Secondary effluent

Manure

PS

TC

PS

TC

PS

TC

Total colony count

30

8.2x1010

30

6.7x106

30

5.3x106

Faecal coliforme

30

9.4x108

30

5.2x103

30

4.2x102

Faecal streptococcus

30

7.8x104

30

6.5x103

26

3.2x102

Salmonella spp

9

2.1x102

3

1.3x101

0

0

Shigella spp

2

1.1x101

0

0

0

0

Streptococcus pneumonia

11

6.9x102

8

4.2x102

10

5.2x101

Staphylococcus aureus

9

8.7x103

6

6.3x103

8

9x102

Pseudomonas aeruginosa

11

3.4x104

7

3.2x102

10

2.1x102

Bacillus cereus

10

2.3x102

4

7.3x101

8

5.1x101

Escherechia. Coli

30

7.6x106

30

2.8.x103

30

1.2x102

 

 

Fungi recovered from raw sewage:

Sixty five species belonging to twenty three genera were isolated from 30 samples of raw sewage on Sabouraoud’s dextrose agar without (23 genera and 60 species) or with (21 genera and 39 species) cycloheximide at 28 ºC (Table 1). The total number of fungal propagules encountered on both media were 3309.3 and 1404.44 colony per ml.

The most prevalent genera, species on those media were Aspergillus (15), Penicillium (9), Fusarium (5), Cladosporium, (4) Alternaria(4), Cochliobolus (3) Trichoderma(3), Scopulariopsis (2) Mucor (2),Geotrichium (1) and Gibberella (1). They recovered from 66.6 -100% of the samples, constituting 2.17-28.75 % of total fungi respectively. Of the above genera the most frequently encountered species were: Aspergillus flavus, A.fumigatus, A.niger, Acremonium stictum, Aspergillus terreus, A. versicolor, Cladosporium cladosporioides, C. herbarum, C. oxysporum, Gibberella fujikuroi, Cohliobolulus hawaiiensis, Fusarium solani, F. oxysporum, Penicillium chrysogenumGeotrichum candidum and Scopulariopsis brevecaulis. The above fungi were recovered previously, but with different numbers and frequencies, from sewage and sludge or soil receiving City sewage effluent (Abdel-Hafez and EL-Sharouny, 1987; Abdel-Mallek et al., 1988; Gray, 1982; Niebl, et al., 1982 and Ismail and Abel- Sater 1994).

On Sabouraoud’s dextrose agar with cycloheximide, thirty nine species belonging to sixteen genera were isolated from 30 samples of raw sewage (Table 1).

The total number of fungal propagules encountered on this media was lower compared to those encountered on Sabouraoud’s dextrose agar without cycloheximide (Table 2). The prevalent genera on this media were Aspergillus (9 species), Penicillium (6), Cladosporium, (3), Fusarium (2), Alternaria (2), Cochliobolus (2) Chrysosporium (3), Gibberella (1) and Geotrichum (1). They were isolated from 50-100 of the tested samples. The most common species were: Aspergillus flavus, A. fumigatus, A. niger, Gibberella fujikuroi, Geotrichum and Cohliobolules hawaiiensis were recovered in high frequency of occurrence and constituted 4.60, 3.36, 3.34, 3.35, 3.18 and 2.63 % of total fungi respectively. A, vercicolor, A. ochraceus, Alternaria alternata, A.phragmospora, Acremonium strictum, Cladosporium cladosporioides, C. oxysporum, Fusarium solani, F. pallidoroseum, F. semitectum, Penicillium chrysogenumP. funiculosumP. spinolosumCochliobolus lunatusTrichoderma hamatum, T. longibarchiatum, Scopulariopsis brevecaulis and Scopulariopsis brumptii were recovered from 26.6-43.3% of the samples and constituted 1.43-2.93% of total fungi respectively.

Mucor, Rhizopus and Aspergillus tamarrii were not rcovered on this medium, but they encountered on On Sabouraoud’s dextrose agar without cycloheximide in different frequencies. The remaining genera and species were isolated in low or rare frequency of occurrence.

 

 

Table (2): Total counts (TC), number of  isolated cases of (NCI), occurrence remarks (OR) and percentage of frequencies (F%) of fungal genera and species recorded from raw sewage on Sabouraud’s agar,

 with and without cycloheximide at 28 oC.

Genera & Species

Sabouraud’s agar

Without cycloheximide

Sabouraud’s agar with cycloheximide

 

TC

NCI&OR

F%

TC

NCI&OR

F%

 

Absidia corymbifera (Cohn) Sacc.&Trotter

62.7

9M

30

0

0

0

 

Acremonium Strictum  W.Games

91.4

14M

46.6

52.1

10M

33.3

 

Alternaria

201.2

30H

100

61.1

11M

36.6

 

A. alternata (Fries) keissler

57.7

15H

50

32.3

8M

26.6

 

A. chlamydospora Mouchacca 

37.7

6L

20

0

0

0

 

A. Phragmospora Van Emden

61.4

13M

43.3

0

0

0

 

A. tenuissima (Kunze) Wiltshire

44.4

9M

30

28.8

6L

20

 

Aspergillus

927.57

30H

100

413.6

30H

100

 

A. aureolatus Munt., Cvet. & Bata

37.9

6L

20

0

0

0

 

A. clavatus Desm.

28.3

8M

26.6

0

0

0

 

A. flavus  Link

145.1

27H

90

96.4

19H

63.3

 

A. fumigatus  Freserius

129.6

25H

83.3

70.4

15H

50

 

A. glaucus Link

37.7

6L

20

0

0

0

 

A. melleus Yukawa

57.0

12M

40

0

0

0

 

A. niger  Van Tieghem

124.8

20H

66.6

69.9

16H

53.3

 

A. ochraceus  Welhelm

62.7

9M

30

58.6

8M

26.6

 

A. sydowii (Bin. & Sart.) Thom& Church

36.1

7L

23.3

31.1

6L

20

 

A. tamarii  Kita

37.7

6L

20

0

0

0

 

A. carncus (v.Tiegh) Blochwis

32.7

7L

23.3

0

0

0

 

A. resttrictus Smith

45.5

8M

26.6

13.3

2R

6.6

 

A. terreus  Thom

74.3

16H

53.3

56.6

10M

33.3

 

A. ustus  (Bain.) Thom & Church

61.4

10M

33.3

17.3

4L

13.3

 

A. versicolor (Vuill.)Tiraboschi

72.2

15H

50

56.6

11M

36.6

 

Blastomyces dermatitides Gilchrist et Stokes

57.7

9M

30

36.6

7L

23.3

 

Chrysosporium

35.2

6L

46.6

86.5

16H

56.6

 

C. tropicum Carmichael

35.2

6L

46.6

36.6

7L

23.3

 

C. indicum  (Randhawa & Sandhu) Gary

0

0

0

31.1

6L

20

 

C. parvum (Emmonsia & Ashburn) Carmichael

0

0

0

28.3

4L

26.6

 

Cladosporium

239.6

29H

96.6

144.6

22H

73.3

 

C. cladosporioides (Fries)de vries

74.3

17H

56

56.6

13M

43.3

 

C. herbarum (Pers.) Link ex Gray

72.2

15H

50

13.3

3R

10

 

 

 

 

 

 

 

 

 

 

C. oxy C. axysporium  Ber. & Curt.

70.4

16H

53.3

61.4

13M

43.3

C. sphaerospermum Penzig

13.3

3R

10

0

0

0

Cylindrocarpon  Congoense. Meyer

31.3

7L

23.3

35.5

12M

40

Cochliobolus

155.9

27H

90

66.3

18H

60

C. hawaiiensis  Alcorn

68.4

15H

50

0

0

0

C. lunatus  Nelson & Haasis

56.0

10M

33.3

43.3

11M

36.6

C. spicifer  Nelson

31.5

9M

30.0

23.0

12M

40

Cunninghmella elagans Lendner

56.6

11M

36.6

0

0

0

Fusarium

292.5

30H

100

62.9

15H

50

F. solani  (Mart) Sacc

64.0

20H

66.6

36.3

11M

36.6

F. oxysporum  Schlecht

64.0

15H

50

26.6

5L

16.6

F. pallidoroseum (Cooke) Sacc.

52.1

12M

40

0

0

0

F. semitectum Berk & Rav.

59.1

14M

46.6

0

0

0

F. dimerum  Penzig

53.3

13M

43.3

0

0

0

                           

Table (2) : Continued

Genera &Species

Raw sewage

 

Sabouraud’s agar

Without cycloheximide

Sabouraud’s agar with cycloheximide

 

TC

NCI&OR

F%

TC

NCI&OR

F%

 

 

Gibberella fujikuroi (Sawada) Ito

79.8

22H

73.3

70.2

16H

53.3

 

 

Geotrichum candidum Link

69.9

16H

53.3

66.6

15H

50

 

 

Graphium sp.

51.5

9M

30

0

0

0

 

 

Histoplasma capculatum Darling

0

0

0

16.6

4L

13.3

 

 

Microsporum

36.6

8M

26.6

63.2

11M

36.6

 

 

M. canis Bodin

0

0

0

13.3

3R

10

 

 

M. gypseum (Bodin) Guiart et Grigorakis

36.6

8M

26.6

33.3

7L

23.3

 

 

M. manginii (Loubiere) Curzi

0

0

0

16.6

4L

13.3

 

 

Mucor

107.6

20H

66.6

0

0

0

 

 

M. circinelloides Van Tieghem

64.0

13M

43.3

0

0

0

 

 

M. rasemosus Fresenius

43.6

8M

26.6

0

0

0

 

 

Penicillium

415.3

30H

100

83.44

20H

66.6

 

 

P. chrysogenum  Thom

69.5

23H

76.6

53.3

12M

40

 

 

P. raistrickii G. Smith

47.7

9M

30.0

0

0

0

 

 

P. brevicompactum Dierckx

53.3

13M

43.3

33.3

6L

20

 

 

P. citrinum Thom

32.3

7L

23.3

24.0

4L

13.3

 

 

P. funiculosum Thom

64.0

14M

46.6

36.3

11M

36.6

 

 

P. verruculosum Peyronel

20.0

4L

13.3

13.3

2R

6.6

 

 

P. expansum Link

20.0

6L

20

0

0

0

 

 

P. spinolosum Thom

59.1

10M

33.3

0

0

0

 

 

P. rubrum Stoll

36.1

8M

26.6

30

4L

13.3

 

 

Pestalotia pezizoides de Notaris

36.1

8M

26.6

0

0

0

 

 

Rhizopus stolonifer(Ehrenb)Lindt

37.7

5L

16.6

0

0

0

 

 

Scopulariopsis

112.1

21H

83.3

56.1

14M

46.4

 

 

S. bervicaulis (Sacc.) Bain.

71.1

15H

50

56.1

14M

46.6

 

 

S. brumptii  Salvanet-Duval

41.0

7L

23.3

0

0

0

 

 

Sordaria fumicola (Roberge) Cesati & de Notaris

51.1

9M

30.0

0

0

0

 

 

Sterile mycelia (white, yellow, dark)

32.3

7L

23.3

25.3

5L

16.6

 

 

Trichoderma

151.0

22H

73.3

54.8

9M

30

 

 

T. hamatum (Bon.) Bain.

47.5

12M

40.0

0

0

0

 

 

T. viride Persoon

35.1

8M

26.6

0

0

0

 

 

T.longibarchiatumiRifai

68.4

14M

46.6

54.8

9M

30

 

Yeasts

126.3

30H

100

83.3

18H

60

 

Gross total count

3309.3

1404.44

 

Number of genera    = 23

23

21

 

Number of species     =65

60

39

                                             

Occurrence remarks (OR), H= high occurrence, from 15-30 cases; M= moderate occurrence, from 8-14 cases; L= low occurrence, from 4-7 cases; R= rare occurrence, from1-3 cases (out of 30 cases).

 

 

 

Fungi recovered from secondary effluent :

Twenty five species belonging to twelve genera were isolated from 30 samples of secondary effluent on Sabouraoud’s dextrose agar with /or without cycloheximide and at 28 ºC (Table 3).

The total numbers of fungal propagules encountered in all samples on both media were 418.6 and 773.3 colony per ml. The prevalent genera on Sabouraoud’s dextrose agar without cycloheximide were Aspergillus (10 species), Fusarium (3), Cladosporium (2) and Penicillium (3) and they were isolated from 100, 66.6, 56.6 and 50% of the samples, constituting 37.5, 12.19, 11.04 and 10.7% of total fungi respectively. The most common species were Aspergillus flavus, A. fumigatus, A. niger, A. terreus, Cladosporium cladosporioides, Gibberella fujikuroi, Fusarium solani, F. oxysporum, Penicillium chrysogenum, and Scopulariopsis brevecaulis. They were recovered from 40-26.6 % of the samples and constituted 6.89- 26.6 % of total fungi. These species were previously recovered but with different incidences from soil receiving city sewage effluent in Egypt (Abdel-Hafez and EL-Sharouny, 1987). The remaining species were collected in low and rare frequency of occurrence. Chrysosporium was not encountered on this media.

The most dominant fungus on Sabouraoud’s dextrose agar containing cycloheximide was Aspergillus (10 species). It was isolated from 100% of the tested samples, constituted 38.17 of total fungi. The most dominant species was A. flavus. It was encountered in moderate frequency of occurrence. The remaining species were isolated in low and rare frequency of occurrence. Cladosporium (2 species), Penicillium (3), Fusarium (3) and Gibbbrella (1). They were isolated in moderate frequency of occurrence and encountered from 43.3, 43.3, 40, and 26.6 % of the total samples, representing 14.2, 13.6, 13.9 and 7.16 of the total fungi respectively.

The remaining genera and species were collected in low or rare frequency of occurrence.

 

Fungi recovered from dewatered sludge (manure):

Sixty species belonging to 25 genera were isolated from 30 samples dewatered sludge (manure) of secondary effluent on Sabouraoud’s dextrose agar with and without cycloheximide at 28 ºC (Table 4).

The prevalent genera on cycloheximide free medium were Aspergillus (11 species), Penicillium (7), Fusarium (4), Alternaria (3), Cladosporium (3), Trichoderma(3), Cochliobolus (3), Scopulariopsis (3) Mucor (2) and Gibberella (1). They were isolated in high frequency of occurrence, constituting 3.03-28.87 % of total fungi respectively. The most common species were: Aspergillus flavus, A.fumigatus, A.niger, Aspergillus Terreus, Gibberella fujikuroi, Fusarium solani and Penicillium funiculosum. They were recovered from 50-60% of the samples. On the other hand Aspergillus ochraceus, A.versicolor, C. cladosporioides, C. oxysporum, Alternaria alternataA. tenuissimaChaetamium globosum, Cohliobolus hawaiiencsis C.lunatus, C. spicifer, Geotrichum candidum, Fusarium oxysporum, Mucor circinoeloides, M. racemosus, Penicillium chrysogenum, Penicillium brevicompactum P. citrinum, Rhizopus oryzae, Trichoderma viride, and Scopulariopsis brevecaulis were collected in moderate frequency of occurrence. They were encountered from 26.6- 46.6% of the total tested samples, constituting 1.42-3.04 % of the total count of fungi. The remaining species were collected in low or rare frequency of occurrence.

 The prevalent genera recovered on Sabouraoud’s dextrose agar with cycloheximide were: Aspergillus (8 species), Penicillium (4), Cladosporium, (2), Fusarium (2), Alternaria(2) and Cochliobolus (2). They were isolated from 50-100 of the tested samples accounting to 30.6- 6.99. % of total fungi respectively. The most common species was: Aspergillus flavus. It was the only species recovered in high frequency of occurrence, constituting 5.26 % of the total fungi.

Aspergillus fumigatus, A. niger, A. terreus, A. ochraceus, Alternaria alternata, Cladospoium cladosporioides, Fusarium solani, Penicillium chrysogenumP. funiculosumCochliobolus lunatus, Scopulariopsis brevecaulis and Gibberella Fujikuroi were recovered in moderate frequency of occurrence (Table 4).

 

 

Table (3) : Total counts (TC), number of cases of isolation (NCI), occurrence remarks (OR) and percentage of frequencies (F%) of fungal genera and species recorded from secondary effluent on Sabouraud’s agar,

with and without cyclohexamide at 28 oC.

Genera & Species

Sabouraud’s agar

without cyclohexamide

Sabouraud’s agar with cyclohexamide

TC

NCI&OR

F%

TC

NCI&OR

F%

Alternaria

42.6

6L

20

 

 

 

A. alternata (Fries) keissler

29.3

5L

16.6

13.3

3R

10

A. tenuissima (Kunze) Wiltshire

13.3

2R

6.6

13.3

1R

3.3

Aspergillus

290.1

30H

100

146.5

21H

50

A. flavus  Link

53.3

12M

40

31.6

8M

26.6

A. fumigatus  Freserius

50.0

12M

40

30.4

7L

23.3

A. niger  Van Tieghem

36.0

10M

33.3

25.0

7L

23.3

A. ochraceus  Welhelm

34.2

7L

23.3

17.7

3R

10

A. tamarii  Kita

20.0

2R

6.6

0

0

0

A. terreus  Thom

43.6

11M

36.6

28.5

7L

23.3

A. ustus  (Bain.) Thom & Church

23.3

4L

13.3

13.3

2R

6.6

A. versicolor(Vuill.) Tiraboschi

30.0

4L

13.3

0

0

0

Chrysosporium. Tropicum Carmichael

0

0

0

22.2

3R

10

Cladosporium

85.4

17H

56.6

59.5

8M

26.6

C. cladosporioides (Fries)de vries

48.8

12M

40

26.6

5L

16.6

C. herbarum (Pers.) Link ex Gray

34.6

5L

16.6

22.2

3R

10

Fusarium

94.3

20H

66.6

45.2

12M

40

F. dimerum  Penzig

22.2

3R

10

0

0

0

F. oxysporum  Schlecht

26.6

8M

26.6

18.6

5L

16.6

F. solani  (Mart) Sacc.

45.5

12M

40

26.6

9M

30

Gibberella fujikuroi (Sawada) Ito

43.0

13M

43.3

30.0

8M

26.6

Geotrichum candidum Link

24.7

7L

23.3

21.3

5L

16.6

Penicillium

82.8

15H

50

57.0

13M

43.3

P. chrysogenum  Thom

30.0

8M

26.6

20.9

7L

23.3

P. citrinum Thom

18.6

5L

16.6

13.3

3R

10

P. funiculosum Thom

34.2

7L

23.3

22.8

7L

23.3

Rhizopus stolinefer (Ehrenb) Lindt

26.6

6L

20

0

0

0

Scopulariopsis

34.3

9M

30

16.0

5L

16.6

S. bervicaulis (Sacc.) Bain.

18.3

8M

26.6

16.0

5L

16.6

S. brumptii  Salvanet-Duval

16.0

5L

16.6

0

0

0

Trichoderma viride Persoon

13.3

7L

23.3

0

0

0

Yeasts

36.2

14M

46.6

24.0

10M

33.3

Gross total count

733.3

436.8

Number of genera     = 12

11

10

Number of species     = 25

24

23

 

Occurrence remarks (OR), H= high occurrence, from 15-30 cases; M= moderate occurrence, from 8-14 cases; L= low occurrence, from 4-7 cases; R= rare occurrence, from1-3 cases (out of 30 cases).

 

Table (4) : Total counts (TC), number of cases of isolation (NCI), occurrence remarks (OR) and percentage of frequencies (F%) of fungal genera and species recorded from dewatered sewage (manure)

 on Sabouraud’s agar, with and without cyclohexamide at 28 oC.

 

Genera &Species

Sabouraoud’s agar

Without cyclohexamide

Sabouraoud agar

 with cyclohexamide

 

TC

NCI&OR

F%

TC

NCI&OR

F%

 

Alternaria

151.4

20H

66.6

72

18H

60.0

 

A. alternata (Fries) keissler

56.0

10M

33.3

41.6

8M

26.6

 

A. chlamydospora Mouchacca

49.5

7L

23.3

0

0

0

 

A. tenuissima (Kunze) Wiltshire

45.9

9M

30

30.4

7L

23.3

 

Aspergillus

530.4

30H

100

315.7

30H

100

 

A. flavus  Link

85.1

18H

60

54.2

15H

50

 

A. fumigatus  Freserius

80.7

18H

60

49.5

14M

46.6

 

A. glaucus Stoll

20.0

4L

13.3

0

0

0

 

A. niger  Van Tieghem

74.1

16H

53.3

51.1

12M

40

 

A. ochraceus  Welhelm

55.3

13M

43.3

38.0

7L

23.3

 

A .prasiticus Speare

23.3

4L

13.3

13.3

2R

6.6

 

A. sydowii (Bin. & Sart.) Thom & Church

29.3

5L

16.6

26.6

4L

13.3

 

A. tamari  Kita

24.4

6L

20

0

0

0

 

A. terreus  Thom

69.3

15H

50

45.3

10M

33.3

 

A. ustus  (Bain.) Thom & Church

32.3

7L

23.3

0

0

0

 

A.versicolor(Vuill.)Tirabosci

36.6

8M

26.6

37.7

6L

20

 

Chaetomium globosum Kunze

35.0

8M

26.6

33.3

6L

20

 

Chrysosporium

13.3

3R

10

37.3

6L

20

 

C. tropicum Carmichael

13.3

3R

10

24.0

5L

16.6

 

C. parvum (Emmonsia & Ashburn) Carmichael

0

0

0

13.3

1R

3.3

 

Cladosporium

133.4

26H

86.6

80.6

18H

60

 

C. cladosporioides (Fries)devries

50.7

14M

46.6

38.7

11M

36.6

 

C. herbarum (Pers.) Link ex Gray

36.1

7L

23.3

0

0

0

 

C. oxysporium  Ber. & Curt.

46.6

10M

33.3

41.9

7L

23.3

 

Cochliobolus

101.1

27H

90

66.0

15H

50

 

C. hawaiiensis  Alcorn

32.5

9M

30

0

0

0

 

C. lunatus  Nelson & Haasis

36.6

12M

40

41.3

10M

33.3

 

C. spicifer  Nelson

32.0

10M

33.3

24.7

7L

23.3

 

Doratomyces stimonitis Smith

32.5

7L

23.3

0

0

0

 

Fusarium

181.7

19H

63.3

73.7

18H

60

 

F. dimerum  Penzig

31.1

3R

10

0

0

0

 

F. oxysporum  Schlecht

46.6

10M

33.3

30.4

7L

23.3

 

F. semitectum Berk. & Rav.

28.8

6L

20

0

0

0

 

F. solani  (Mart) Sacc.

58.6

15H

50

43.3

12M

40

 

Gibberella fujikuroi (Sawada) Ito

55.8

16H

53.3

43.8

13M

43.3

 

Geotrichum candidum Link

43.3

8M

26.6

13.3

7L

23.3

Graphium sp

57.7

13M

43.3

0

0

0

 

Histoplasma capculatum Darling

0

0

0

13.3

1R

3.3

 

Macrophomina phaseolina (Tassi) Goidanich

24.7

7L

23.3

0

0

0

 

Microsporum

16.0

5L

16.6

28.8

7L

23.3

 

M. cansi Bodin

0

0

0

13.3

3R

10

 

M. gypseum Bodin

16.0

5L

16.6

15.5

6L

20

 

Mucor

66.9

16H

53.3

0

0

0

 

M. cercinoloides Van Tieghem

36.9

14M

46.6

0

0

0

 

M. rasemosus  Fresenius

30.0

8M

26.6

0

0

0

 

Penicillium

264.6

30H

100

121

22H

66.6

 

P. chrysogenum  Thom

42.0

13M

43.3

32.5

8M

20

 

P. roistrickii G. Smith

22.2

3R

10

0

0

0

 

P albidum Sopp

26.6

4L

13.3

0

0

0

 

P. brevicompactum Dierckx

36.0

10M

33.3

0

0

0

 

P. citrinum Thom

34.6

10M

33.3

34.2

7L

13.3

 

P. funiculosum Thom

54.6

15H

50

41.0

13M

23.3

 

P. rugulosum Thom

32.0

5L

16.6

0

0

0

 

P. rubrum Stoll

16.6

4L

13.3

13.3

3R

10

 

                             

Table (4) : Continued

 

Genera &Species

Sabouraoud’s agar

Sabouraoud agar with cyclohexamide

 

TC

NCI&OR

F%

TC

NCI&OR

F%

Phialophora repens (Davidson) Conant

13.3

1R

3.3

13.3

1R

3.3

 

Rhizopus

46.4

12M

40

0

0

0

 

R. nigricans (Ehrenb) Lindt

29.3

10M

33.3

0

0

0

 

R. oryzae Went & Prinsen

17.1

7L

23.3

0

0

0

 

Scopulariopsis

95.7

18H

60

32.0

10M

33.3

 

S. bervicaulis (Sacc.) Bain.

35.8

13M

43.3

32.0

10M

33.3

 

S. brumptii  Salvanet – Duval

28.8

6L

20

0

0

0

 

S. candida (Gueguen) Vuillemin

31.1

6L

20

0

0

0

 

Sordaria fumicola (Roberge) Cesati & de Notaris

20.9

5L

16.6

0

0

0

 

Setosphaeria rostrata Leonard

29.3

7L

23.3

0

0

0

 

Trichoderma

104.3

16H

53.3

22.2

3R

10

 

T. hamatum (Bon.) Bain.

33.3

6L

20

0

0

0

 

T. viride Persoon

47.7

12M

40

0

0

0

 

T.longibarchiatum Rifai

23.3

4L

13.3

22.2

3R

10

 

Trichothicium roseum (Pers.) Link ex gray

34.2

7L

23.3

26.6

4L

13.3

 

Verticillium spp..

28.5

7L

23.3

0

0

0

 

Yeasts

54.1

16H

53.3

50.4

14M

46.6

 

Gross total count

2110.92

988.1

 

Number of genera      = 25

24

16

 

Number of species     =60

55

31

 

                             

Occurrence remarks (OR), H= high occurrence, from 15-30 cases; M= moderate occurrence, from 8-14 cases; L= low occurrence, from 4-7 cases; R= rare occurrence, from1-3 cases (out of 30 cases).

 

 

The remaining genera and species were isolated in low or rare frequency of occurrence.

Fungi recovered from the present study have been found in large numbers in sewage (Gray, 1982; Niebl, et al., 1982; and Ismail and Abel- Sater 1994; Diener., et al., 1976; Elland 1981; Larry and Wanger, 1982; Abdel-Hafez and EL-Sharouny, 1987; and Abdel-Mallek et al., 1988).

Also numerous fungi recovered in our study are well known as mycotoxin producing fungi (Tseng, et al., 1995; Aleksandrowies, and Smyk, 1973; Enomoto and Saito, 1972; Pitt, 1994; Rippon, 1982; Sutic, et al., 1979 and Scudamore 1993).

 A certain number of the fungus species recovered in this study are pathogenic (Austwick, 1983; Wadhwani and Srivastava 1985 and Pitt 1994).They are potential facultative causative agents of different mycotic infection (Velzer and Diaz, 1985; Bunse and Merk, 1992, Sutton, et al., 1998, Hoog, et al., 2000).

 

CONCLUSION:

The workers in the sewage treatment plant most have a health risk during the treatment processes. Health risk are associated with the pathogens, which may spread through being directly, or indirectly ingested into the human body. Pathogens and toxic compounds may be disseminated through Sludge and Sewage, as well as through aerosols (Hickey and Reist, 1975; Bausum et al., 1978 and Bausum et al., 1982). The windy weather raises the question of potential human health hazard passed by pathogen-containing aerosols, in the sewage treatment plant and human communities in the surrounding areas.

The same problem regarding the health of agricultural workers occurs when spray irrigation of sewage effluent is used. Aerosol droplets containing pathogens have been reported to travel up to 1-2 Km (Adams and Spendlove, 1970). Pathogens are more effective when inhaled than when ingested (Melnick, et al., 1978).

Two sewage workers in the Ibb sewage treatment plant suffer from an allergic skin disease (Al-Zubeiry and Al-Shargaby, 1997). But in general sewage workers suffer from an increased incidence of infection or other diseases (Pahren, and Jakubowski,1980; and SWaWWA, 1978). It is important for these workers to have suitable protective clothing, shoes and gloves. Ventilation should be satisfactory, and treatment processed should be automated to the fullest extent possible.

Perhaps the most important single factor is to make sure that sewage workers know how to avoid infection and that they are aware of and use protective measures in their daily work. However, the one of the most important questions, it is the position of sewage treatment plant. Sewage treatment plant must be far away from cities and human communities and must be built in the suitable place from a public health point of view.

 

REFERENCES:

Abdeerahman Walid. A. and Shahlam A. M. (1991): Reuse of wastewater effluent for irrigation in severely arid regions” Alternative schemes- a case study”. Water Resources Development. (4), 235-246.

Abdel-Hafez, A.I.I. and El-Sharouny, H.M.M. (1987): Seasonal fluctuations of fungi: in Egyptian soil receiving city sewage effluents. Cryptogamie. M. Mycologie 8: 235-249.

Abdel-Mallek, A.Y, Moharram, A.M. and Bagy, M. M. K.(1988): Effect of soil treatment with sewage and sludge on fungal populations. J. Basic Microbiol. 28. 9/10, 565-570.

APHA-American Public Health Association (1989): Standard methods for the examination for water and wastewater. 20th ed., AWWA, WPCF, Washington, D.C., USA.

 Adams, A.P. and J.C. Spendlove (1970): Coliform aerosols emitted by sewage treatment plants, Science (169), 1218-1220.

Aleksandrowies, J., and B. Smyk (1973): The association of neoplastic diseases and Mycotoxins in the environment. Texas. Rep Biol, Med. 31.715. (Torry and Marth, 19770).

Austwick, P.k.C. (1983): Fungi as a cause of human and animal diseases. In Plant Pathologists pocket book (2nd ed. Johnson J. & Boot C. Commonwealth Mycological Institute, Kew, Surrey, England.

Bausum, H. T., Brockett, B. E., Schumacher, P. W., Schaub, S. A., McKim, H. L. and Bates. (1978): Microbiological aerosols from a field source during Sprinker irrigation with wastewater, [273-280] In International symposium on land treatment of Wastewater, Vol. 2. U.S. Army Corps of Engineers. Hanover, N.H.

Bausum, H.T., Schaub, S. A., Kenyon, K. F. and Small, M. J. (1982): Comparison of Coliphage and Bacterial Aerosols Spray Irrigation Site. Applied and Environ. Microbiology, Vol. 43, N0. 1. PP. 28-38

Bouwer H. (1982): wastewater reuse in arid areas, PP. 137-180 in water reuse, Ann Arbor Science Puplishers, Ann Arbor.

Bunse, T. and Merk H. (1992): Mycological aspects of inhalative mould allergies. Mycoses; 35: 61- 66.

Diener. U. Morgan-Jones, G. Hagles, W.M. and Davis, D.(1976): Myco-flora of activated sewage sludge. Mycopathologia 58:115-116.

Domsch, K. W., Gams, W. & Anderson, T. H. (1980): Compendium of soil fungi. Academic Press, London.

Doyle, Michael P. et al.1997. Food Microbiology fundamentals and frontiers. ASM Press, Washington D.C. pp. 137-38.

Dunlop, S. G and W. L. Wang.(1961): Studies on the use of sewage effluent for irrigation of ttruckcrops. J. Milk Food Technol. 24:44-47.

Dudley, D.J., Guentzel, M. N., Ibarra, M. J., Moore, B.E and Sagik, B.P. (1980): Enumeration of Potentially pathogenic bacteria from sewage sludges. Appl. Environ. Microbiol. 39: 118-126.

Elland, F. (1981): The effects of application of sewage on micro-organisms in soil. Danish J. Plant Soil Sci. 1534:39-46.

Ellis, M.B. (1976): More Dematiaceous Hyphomycetes. Commnwealth Mycolog-ical Institute, Kew, Surrey, UK.

Enomoto. M and Saito, M.(1972) : Carcinogens produced by fungi Ann. Rev. Microbiol. 26 : 279-312.

El-Zaemey, A.K. (1992): Wastewater reuse practices in Yemen. In Prroceeding of the National Seminar on Wastewater Reuse. May 9-11, 1992. PP 35-43.

Emeral, G. and and Kayser, R. (1984): German experience in ruse of wastewater for agriculture purpose, in Water Reuse. Institute for Scientific Cooperation, Tubingen, Germany.

Epstein L., Kimberly, D. and Safir, G(1982):Plant diseases in an old field ecosystem irrigated with municipal wastewater. J. Environ. Qual. 11: 65-69.

FAO (1992): Wastewater treatment and use in Agriculture. Rome, 1992

Feachem, R. G., Bradly D. G., Garelic H and Mara, D. D.(1983): Sanitation and dis ease: Health Aspect of Excreta and Wastewater Management. John Wiley, Chichester.

Gray, N.F. (1982): A key to the major slim-forming organisms of sewage fungus. J. Life Sci. R Dublin Sco., 4, 97-112.

Halderson, J.L. & Zons, D.R. (1978): Use of Municipal Sewage in Reclamation of Soils, Am.Soc. Agron., PP. 355-377.

Hickey, J.L.S., and P. C. Reist (1975): Health significance of air-borne microorganisms from Wastewater treatment processes. J. Water Pollut. Control Fed. 47:2741-2757.

Hoog, G. S., Cuarro, J., Gene, J. and Figueras. (2000): Attlas of Clinical Fungi. Send edition. Centraalbureau voor Shimmelcultures/Rovira i Virgili.

Ismail. M. A. and Abdel-Sater, M. A. (1994): Mycoflora inhabiting water closet environments. Mycoses 37:53-57.

Kirk, John H. Pathogens in Manure. http://www.vetmed.ucdavis.edu/vetext/INF-DA/Pathog-manure.pdf>Accessed 2003 Nov 7.

Kowal, N.E., Pahren, H. R. and Akin, E. W. (1980): Microbiological health effects associated with the use of municipal Wastewater for irrigation, p. 1-50. In International Conference on Cooperative Research Need for the Renovation and reuse of Municipal Wastewater for Agriculture. Secretaria de Agricltura y Recursos Hidraulicos, Mexico, D. F.

Larry M.Z. and Wanger G.H. (1982): Bacterial growth and fungal genera distribution in soil amended with sewage sludge containing cadmium, chromium and copper. Soil Sci. 134: 364-370.

Larkin, P.E., Tierney, J.T., Lovett, J.,Van Donsel, D. and Francis. (1978): Land application of sewage wastes: potential for contamination of foodstuffs and agricultural soils by viruses bacterial pathogens and parasites, P. 215-223. In H.L McKim(ed.), State of knowledge in land treatment of wastewater. U. S. Army Corps of Enginees, CRRL, Hanover, N. H.

Madancy, R. S(1981): The role of federal and state agencies to stimulate, coordinate and fund research related to the renovation and reuse of municipal wastewater in the United States, In municipal Wastewater in Agriculture, Academic Press, New York.

Mara D.D and Cairncross S(1989): Guidelines of the safe use of wastewater and excreta in agriculture and aquaculture – measure for public health protection. World Health organization, Genevv

Melnick, J. L, Gerba C. P. and Wallis C. (1978): Virus in Water, Bulletin of the World Health Organization, Vol. 56, N 4, pp 499-508.

Moss, E. S and McQuown, A. L. (1969): Atlas of medical mycology, 3rd. ed. Baltimore, Williams and Wilkins Co.

Moubasher, A. H. (1993): Soil Fungi in Qatar and Other Arab Countries. The Scientific and Applied Research Center,Univ. of Qatar.

Niebl, A., Lacy, A. M. and Aguero, F. (1982): Mycological analysis of facultative stabilization deposit of sewage of Almlyoa de Rio State of Mexico. Rev. Latnoam Microbiol., 24, 59-63.

Neis, U. (1984):‘Wastewater Reuse’, in Selected Reports on Water Reuse in Urban and Rural Aereas, University of Karlsruhe and Alfred Bittner, Tubing, Germany.

Nell, J. H., Engelbrecht, J. F. P., Smith, L. S &Nupeen, E. M(1981): Wat. Sci. Tech. 13, 153.

Pahren, H., and Jakubowski W. (1980) (ed): Wastewater aerosols and disease. U.S. Environment Protection Agency, Cincinnati, Ohio.

Pennsylvania Environmental Network. 2002 Apr 4. National Sludge Alliance Fact Sheet #129. <http://www.penweb.org/ issues/sludge/129.htm>Accessed 2003 Nov 11.

Pitt J.I. (1994): The current role of Aspergillus and Penicillium in human and animal health. J. of Medical and Veterinary Mycology 32.1,17-32.

Raper. K. B. and Fennell. D. (1965): The Genus Aspergillus. The Williams & Wilkins Company, Baltimore. USA.

Raper, K. B. and Thom, C. (1949): A manual of Penicillium. p.875. Williams, Baltimore, USA.

Rippon, J W. (1982): Medical mycology. the pathogenic fungi and pathogenic actinomyctes. W. B. saunderes Co, Philadelphia.

Rosas, I. Baez, A. and Coutino, M. (1984):Bacteriological Quality of Crops Irrigation with Wastewater in the Xochimilco plots, Mexico City, Mexico. Applid and Environmental Microbiology, May 1984, P. 1074-1079.

Scudamore, K. A., Clarke, J.H. and Hetmanski. (1993). Isolation of Penicillum strains producing ochratoxin Acitrininxathomegninviomellein and vioxanthin from stored cereal grains. Letters in Applied Microbiology. 17. 82-87.

Shuval H. I. (1991): The development of health effects guideline for wastewater reclamation. Wat. Sci. Tech. Vol. 24, pp.149-155.

Shuval H. I., Adin A., Fattal B., Rawitz and Yekutiel P. (1986): Wastewater irrigation in Developing countries: Health effects and technical solutions. Technical Paper No. 51. World bank, Washington DC.

Simpson, J. R. (1982): Water pollution control in developing areas: proplems and needs. Water Science and Technology 14, 1353-1373.

Smith, Jr. J.E. (2003): Fate of Pathogens during the Sewage Sludge Treatment. <http://www.precisionlabsinc.com/Sludge/Smith-EPA.htm>. Accessed 2003 Nov1.

Stone, R. J.; Ekwue, E.I and Clarke, R.O. Engineering properties of sewage sludge in Trinidad. Journal of Agricultural Engineering Research, 1998, vol. 70, p. 221-230.

Strachan, S.D., Nelson, D. W & Sommers, L (1983): Envir. Qual. 12, 69.

Sutic, M., Mitic, S., and SvilA.R. N. (1979). Aflatoxin in milk and milk products Mijekarstov. 29 (4) : 74- 80 Dairy Sci. Abst. 42 (2) ; 801. (1980).

UN Department of Technical Coorporation for Development (1985): The use of non-convenitional water recources in developening countries. Natural Water Resources Series No. 14. United Nation DTCD, New York

Sutton, D., Fothergill, A. and Rinaldi, M. (1998): Guide to Clinically Significant fungi. Williams and Wiknis. Baltimore.

Swedish Water and Wastewater Works Association (SWaWWA). (1978): Health risk in Sewage System Swedish Water and Wastewater Work, Association. Stockholm.

Takatori, K.,Ohta,T., Lee, H., Akiyama, K. and Shida, T.(1994): Fungi related to allergies. J. Medical Mycology 35: 409-414.

Tchobanogeuos, G. (1979): Wastewater Engineering: Treatment Disposal Ruse 2nd ed. PP. 56-141 and 829-864. Boston : McGraw Hill.

Tseng, T. C., Tu, J. C., Tzean S. S. (1995). Mycoflora and mycotoxins in dry bean (Phaseolus vulgaris) produced in Taiwan and in Ontario, Canada. Botanical Bulletin of Academia Sinica 36 (4): 229-234.

Velez H. and Diaz F. (1985): Onychomycosis due to saprophytic fungi. Mycopthologia 91; 87-92.

Wadhwani K. and Srivastava A. (1985): Some cases of onychomycosis from north India in different working environments. Mycopathologia 92: 149-155.

WHO (1981) The risk to health of microbes in sewage sludge applied to land EURO Reports and studies No. 54. Regional office for Europe, WHO, Copenhagen. pp.10-18.

WHO(1989): Health guideline for the use of wastewater in agriculture and aquaculture. Technical report No. 778. WHO, Geneva 74 p.

Woolcock J.B., 1991. Microbiology of Animals and Animal Products. Elsevier, New York. pp. 210 – 212.

 

 

الأحياء المجهرية التي تعيش في مياه المجاري والمخلفات الثانوية السائلة والوحل الجاف في محطة التنقية في إب- الجمهورية اليمنية

عبد الرحمن الزبيري

قسم الميکروبيولوجي - کلية العلوم- جامعة تعز - اليمن

 

تم عزل الفطريات والبکتيريا من عينات مياه المجاري الخام والمخرجات الثانوية والمواد الصلبة (الوحل الجاف) بعد التجفيف المستخدمة في هذه الدراسة من بيئات غذائية مختلفة عند درجة تحضين 37ºم للبکتيريا الممرضة و28º م. وقد تم عزل عدد من البکتيريا الممرضة والمحتملة، وکذلک عدد من الفطريات الممرضة أو التي يحتمل أن تسبب أمراض في ظروف خاصة.

وقد تم عزل البکتيريا , faecal Streptococcus, Streptococcus pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus, Escherechia Coli  ، کما تم عزل  Salmonella spp.من مياه المجاري ومن المخلفات السائلة. کما أن Shigella spp  قد عزلت من مياه المجاري فقط. عدد من البکتيريا المعزولة مسببة للأمراض ومکونة للسموم وتشکل خطورة على حياة الحيوان والإنسان، کما تم عزل عدد کبير من الفطريات من مياه الجاري ومخلفاتها السائلة والصلبة على بيئة السبرود بدون السيکلوهيسامايد عند درجة حرارة تحضين 28ºم منها:

Aspergillus flavus, A. fumigatus, A.niger, Acremonium stictum, terreus, A. versicolor,  Cladosporium cladosporoides, C. herbarum, C. oxysporum, Gibberella fujikuroi, Cohliobolules hawaiiensis, Fusarium solani, F. oxysporum, Penicillium chrysogenumGeotrichium candidum and  Scopulariopsis brevecaulis.

وعلى بيئة السبرود مع السيکوهيکسامايد عزلت الأنواع الفطرية الآتية :

Aspergillus flavus, A. fumigatus, A. niger, Gibberella fujikuroi  and Geotrichium candidum,

وقد عزلت فطريات ممرضة بأعداد مختلفة على هذه البيئة، وهي:

Chrysosporium tropicium C. indicum, C. parvum, Geotrichum candidum, Histoplasma capculatum Microsporum  cansi, M. gypseum  and M. manginii.


 

 

 

AUCES

 

MICROFLORA INHABITING RAW SEWAGE, SECONDARY EFFLUENT AND DEWATERED SLUDGE IN IBB,

 YEMEN REPUBLIC

Al-Zubeiry, A. H. S.

Microbiology Department, Faculty of Science, Taiz University, Yemen

 

ABSTRACT :

          The microflora of raw sewage, secondary effluent and dewatered sludge (manure) were investigated. Microbial total counts were relatively higher in raw sewage than in secondary effluent and dewatered sludge. A mongst the bacterial groups recorded in the present investigation, faecal Streptococcus, Streptococcus pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus and Escherechia Coli were found in the three substrates at 37 oC. On the other hand, Salmonella spp.were isolated fromraw sewage and secondary effluent, but Shigella spp were isolated only from raw sewage. Some of these bacterial species can produce toxins and cause infections directly or indirectly through contact with sewage sludge. The most common fungal species in the tested substrates on Sabouraud’s agar, without cyclohexamide at 28oC were: Aspergillus flavus, A. fumigatus, A. niger, Acremonium strictum, Aspergillus. terreus, A. versicolor, Cladosporium cladosporioides, C. herbarum, C. oxysporum, Gibberella fujikuroi, Cohliobolules hawaiiencsis, Fusarium solani, F. oxysporum, Penicillium chrysogenum, Geotrichium candidum and Scopulariopsis brevecaulis. On Sabouraoud’s dextrose agar with cycloheximide the most frequently isolated species were: Aspergillus flavus, A. fumigatus, A. niger, Gibberella fujikuroi and Geotrichium candidum. Some pathogenic fungi were also,isolated, but in various incidences and numbers such as Chrysosporiumtropicium C. indicum, C. parvum, Geotrichum candidum, Histoplasma capsulatum, Microsporum canis, M. gypseum and M. manginii.

 


INTRODUCTION:

Wastewater generated from urban and rural areas after domestic use is a large source of water. It is mainly comprised of water (99,9%) together with relatively small concentrations of suspended and dissolved organic and inorganic solids (Mara and Cairncross, 1989 and UN Department of technical cooperation for development, 1985).

Among the organic substances present in sewage are carbohydrates, lignin, fats, soaps, synthetic detergents, proteins and their decomposition products, as well as various natural and synthetic organic chemicals from process industries.

Sewage sludge (wastewater) is an important source of organic matter (Stranchan., et al.,1983) and plant nutrients. Halderson and Zonz, (1978); Nell et al., (1983) found that the application of sewage sludge increased the nutrient status of the soil. It may increase agricultural production. Sewage sludge also contains pathogenic macro and microorganisms, which can give rise to potential hazard (Abderrahman and Shahlam, 1991) to the health of humans, animals and plants. The health risk associated with wastewater is a major deterrent in wastewater reuse for irrigation. Health risk are associated with pathogens, which may spread diseases through being directly or indirectly ingested into the human body (Dudley et al., 1980; WHO, 1981; 1989; FAO, 1992; Feachem et al., 1983; Shuval, 1991; and Shuval et al., 1986) and fungi (Velez and Diaz, 1985; and Bunes and Merk, 1992).

Pathogens pose the greatest threat to public health; especially when the receiving water is used for domestic recreation on agricultural purpose (Tchobanogeuos, 1979).

The agricultural value of sludge mainly derives from its nutrient content. Sludge, like other organic fertilizers, has long-term beneficial effects on the soil: organic matter contained in sewage sludge improves the physical properties of soil such as aggregate stability, water retention and infiltration, and reduce soil compactibility (Stone et al. 1998). In addition to nutritious content, the organic matter and the C/N ratio are important parameters of the sludge fertilizing potential.

There are many conditions, which may increase the health risk of wastewater reuse in agriculture. The first of these conditions is survival time of pathogenic microorganisms. The natural survival time of pathogenic organisms depends on the carrying medium and the environment. The survival time is a time during which pathogens are capable of causing diseases if they came into contact with a host under favorable condition.

The second of these conditions are  pathogenic bacteria, viruses, protozoa, nematodes and fungi capable of causing diseases which can be found in foods contaminated with sewage water(Bryan,1977; Kowal et al., 1980, and Rosas, 1984). They also can be found harmful to the soil, crops and grazing animals.

On the other hand Pathogenic microorganisms can be transferred from raw sewage and secondary effluent during the irrigation process, directly or in directly to the plants, animal and human, also make various infectious diseases.

Different authors have proved that 5 vegetables are contaminated with microorganisms, when they are irrigated with sewage water and when the soil is fertilized with manure because both usually contain great amounts of pathogenic organisms (Epstein et al., 1982 and Larkin et al., 1978), and when these vegetables are consumed, they could produce diarrhea, salmonellosis, Shigellosis, etc.(Dunlop and Wang, 1961; Kowal et al., 1980 and Rosas et al., 1984).

During the last three decades wastewater reclamation, recycling and reuse in agriculture have received much attention around the world, especially in the arid and semi-arid regions (Neis, 1984; Bouwer, 1982; Emeral and Kayser, 1984; and Madancy, 1981).

Yemen like many other countries in arid and semi-arid regions suffers; from shortage of water resources, so that reuse treated sewage in agriculture is an important question. That is because agriculture seems to be the greatest consumer of water. Annual water consumption has increased dramatically in the last twenty years due to significant social, industrial and agricultural developments. More than 90% of the current water demand is coming from non-renewable groundwater resources in the country.

 Farmers in Yemen, living near the disposal sites of urban wastewater, especially in some of the large cities such as Sana’a, Taiz, Aden, and Ibb are already practicing the reuse of non-treated or partially treated wastewater. (El-Zaemey, 1992). Several countries have produced guidelines, which regulate sewage sludge reuse on the basis of risk to the public health and the environment, however, in Yemen; such guidelines are not established yet.

 In Yemen no investigations have been carried out on the microflora of the sewage and knowledge on the distribution of pathogenic bacteria and fungi in sewage and sludge is absent. Thus, the present study is conducted on the composition, numbers and incidence of various species of bacteria and fungi inhabiting sewage before and after purification.

MATERIALS AND METHODS:

Collection of Sewage Samples:

Thirty samples of each of raw sewage, secondary effluent (500 ml each) and manure (dewatered sludge) (250 gr) were collected from Ibb sewage treatment plant. Each sample was placed in a clean bottle, which was capped tightly and transferred to the laboratory for immediatly bacteriological and mycological analyses.

Five bacterial isolation media were used namely: Nutrient agar for plate count analysis, MF, M-endobroth, MFC agar, MacKonky agar and SS agar. 0.1 ml of each of secondary effluent and raw sewage dilution was used per plate. Three plates of each medium were used for each sewage samples. The counts were calculated per 1ml of sewage, for raw and secondary effluent, and per g dry weight for manure.

Isolation and Identification of bacteria:

Bacteria were encountered using the plate count on nutrient agar.

Total Coliform (TCF) were analyzed using the membrane filtration procedure as described by the APHA (1989) and they were cultured on M-Endo broth (APHA, 1989).

Faecal Coliforms (FC) and faecal Streptococcus (FS) were analyzed using the membrane filtration procedure described by the APHA, (1989). Faecal Coliforms were cultured on M-FC agar (Difco) while faecal Streptococci were grown on m-enterococcus agar (Difco).

        Salmonella concentration was determined using a five tube most probable number (MPN) procedure. Four dilution containing 10-1/ ml, 10-2/ml, 10-3/ml and 10-4/ ml of raw sludge and Five other tubes for effluent with four dilution containing 10-1/ml, 10-2/ml, 10-3 /ml and 10-4 ml of secondary effluent were used. Samples were per-enriched in buffered peptone water (BPW) at 37oC overnight after which 10-1/mlof per-enrich culture was transferred to Rappaport-Vassilladis broth (RV). Enrichment cultures were incubated at 43oC and were subcultured to xylose – deoxycolate agar(XLD) after 24 and 48 h. Presumptive Salmonella were purified on MacConky agar without salt and were screened using biochemical and serological tests.

Isolation and Identification of fungi:

        Two isolation media were used for isolation of fungi. Sabouraoud’s dextrose agar (Moss and Mcquown, 1969) containing 40 g/l dextrose, 10 g/l peptone, 20 g agar/l, 40 mg/l Streptomycin, 20 units of Penicillin /ml and 0.05% cycloheximide (Actidione) and Sabouraoud’s dextrose agar containing 40 mg/l Streptomycin and 0.003% rose-Bengal. One ml of the appropriate of each of secondary effluent and raw sewage and manure was used per plate. Three plates were used for each sewage sample. The plates were incubated at 28oC for 7 days. The counts were calculated per 1ml of sewage.

Identification was carried out by using the taxonomic references of Raper and Fennell (1965), Domsch et al. (1980), Raper and Thom (1949); Ellis (1976); and Moubasher (1993).

 

RESULTS AND DISCUSSION:

Bacteria recovered from raw sewage, secondary effluent and manure:

The total count of bacteria in the raw sewage, secondary effluent and dewatered sludge were 8.2x 1010 C/ml, 6.7x 106 C/ml and 5.3x106 C/g respectively (Table 1). The most common bacteria in the above substrates was faecal coliform. It was isolated samples constituting 9.4x108 C/ml, 5.2x103 C/ml and 4.2x102 C/g respectively. The results in Table (1) show also that the most common bacteria was Escherichia. Coli. It was isolated from all samples of the three substrates constituting 7.6x106, 2.8.x103 C/ml and 1.2x102 C/g respectively.

Salmonella spp. were isolated from 9 and 3 samples of raw sewage and secondary effluent (2.1x102, 1.3x10 C/ml respectively).

Some authorsreported that the Salmonella spp. can infect or contaminate nearly all living vectors from insects to mammals. (WHO, 1981). Human Salmonella infections and other bacterial infections can be caused from the direct or indirect contact with sewage sludge (Pennsylvania Environmental Network, 2002, WHO, 1981 and Doyle et al., 1997).Most serotypes of Salmonella are pathogenic to humans. A common route of infection for humans is through ingestion of products contaminated with animal faeces (Woolcock, 1991).

 Shigella spp were encountered only from raw sewage (1.1x10 C/ml.). Some bacterial species were also isolated in this study from raw sewage, secondary effluent and dewatered sludge (manure). Some of them can be caused infections directly or indirectly contact with sewage sludge.

 Faecal Streptococcus, Streptococcus pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus cereus were also isolated in the present study from the three substrates. High bacterial count were detected in all samples of the three substrates investigated (Table 1). Faecal coliform bacteria were also detected in high numbers in tested substrates.

Some of these bacteria can produce toxins and cause infections directly or indirectly to human. The great numbers of bacterial colonies were isolated from sewage sludge (raw sewage, secondary effluent and manure, 30 samples of each) at 37°C. The most common bacteria were faecal coliform (Table 1). Simpson (1982) reported that Sewage contain the wide spectrum of Bacteria. The most common bacteria in sewage sludge are the enteric bacteria (Coliforms, Shigellae, Salmonella, etc.). Coliforme bacteria can be contain a rare strain of E.coli that is pathogenic to humans (Kirk, 2003). The typical concentration of E. coli found in untreated sewage sludge is 1000,000 wet weight/g of total solids (Smith, 2003).

The results in this study are analogous to those obtained by several workers in many parts of the world (Kirk, 2003, Smith, 2003 and Simpson, 1982). Results revealed also that the bacterial concentration is high and many of them are Pathogens. Our results in this aspect correspond with those of other authors (Smith, 2003 and WHO, 1981).

 



Table (1) : Total counts (TC) and number of positive samples (PS) for Bacteria isolated from 30 samples of each raw sewage (colony/ml), secondary effluent (colony/ml) and manure (colony/g).

Bacteria

Raw sewage

Secondary effluent

Manure

PS

TC

PS

TC

PS

TC

Total colony count

30

8.2x1010

30

6.7x106

30

5.3x106

Faecal coliforme

30

9.4x108

30

5.2x103

30

4.2x102

Faecal streptococcus

30

7.8x104

30

6.5x103

26

3.2x102

Salmonella spp

9

2.1x102

3

1.3x101

0

0

Shigella spp

2

1.1x101

0

0

0

0

Streptococcus pneumonia

11

6.9x102

8

4.2x102

10

5.2x101

Staphylococcus aureus

9

8.7x103

6

6.3x103

8

9x102

Pseudomonas aeruginosa

11

3.4x104

7

3.2x102

10

2.1x102

Bacillus cereus

10

2.3x102

4

7.3x101

8

5.1x101

Escherechia. Coli

30

7.6x106

30

2.8.x103

30

1.2x102

 


Fungi recovered from raw sewage:

Sixty five species belonging to twenty three genera were isolated from 30 samples of raw sewage on Sabouraoud’s dextrose agar without (23 genera and 60 species) or with (21 genera and 39 species) cycloheximide at 28 ºC (Table 1). The total number of fungal propagules encountered on both media were 3309.3 and 1404.44 colony per ml.

The most prevalent genera, species on those media were Aspergillus (15), Penicillium (9), Fusarium (5), Cladosporium, (4) Alternaria(4), Cochliobolus (3) Trichoderma(3), Scopulariopsis (2) Mucor (2),Geotrichium (1) and Gibberella (1). They recovered from 66.6 -100% of the samples, constituting 2.17-28.75 % of total fungi respectively. Of the above genera the most frequently encountered species were: Aspergillus flavus, A.fumigatus, A.niger, Acremonium stictum, Aspergillus terreus, A. versicolor, Cladosporium cladosporioides, C. herbarum, C. oxysporum, Gibberella fujikuroi, Cohliobolulus hawaiiensis, Fusarium solani, F. oxysporum, Penicillium chrysogenum, Geotrichum candidum and Scopulariopsis brevecaulis. The above fungi were recovered previously, but with different numbers and frequencies, from sewage and sludge or soil receiving City sewage effluent (Abdel-Hafez and EL-Sharouny, 1987; Abdel-Mallek et al., 1988; Gray, 1982; Niebl, et al., 1982 and Ismail and Abel- Sater 1994).

On Sabouraoud’s dextrose agar with cycloheximide, thirty nine species belonging to sixteen genera were isolated from 30 samples of raw sewage (Table 1).

The total number of fungal propagules encountered on this media was lower compared to those encountered on Sabouraoud’s dextrose agar without cycloheximide (Table 2). The prevalent genera on this media were Aspergillus (9 species), Penicillium (6), Cladosporium, (3), Fusarium (2), Alternaria (2), Cochliobolus (2) Chrysosporium (3), Gibberella (1) and Geotrichum (1). They were isolated from 50-100 of the tested samples. The most common species were: Aspergillus flavus, A. fumigatus, A. niger, Gibberella fujikuroi, Geotrichum and Cohliobolules hawaiiensis were recovered in high frequency of occurrence and constituted 4.60, 3.36, 3.34, 3.35, 3.18 and 2.63 % of total fungi respectively. A, vercicolor, A. ochraceus, Alternaria alternata, A.phragmospora, Acremonium strictum, Cladosporium cladosporioides, C. oxysporum, Fusarium solani, F. pallidoroseum, F. semitectum, Penicillium chrysogenum, P. funiculosum, P. spinolosum, Cochliobolus lunatus, Trichoderma hamatum, T. longibarchiatum, Scopulariopsis brevecaulis and Scopulariopsis brumptii were recovered from 26.6-43.3% of the samples and constituted 1.43-2.93% of total fungi respectively.

Mucor, Rhizopus and Aspergillus tamarrii were not rcovered on this medium, but they encountered on On Sabouraoud’s dextrose agar without cycloheximide in different frequencies. The remaining genera and species were isolated in low or rare frequency of occurrence.


 

Table (2): Total counts (TC), number of  isolated cases of (NCI), occurrence remarks (OR) and percentage of frequencies (F%) of fungal genera and species recorded from raw sewage on Sabouraud’s agar,

 with and without cycloheximide at 28 oC.

Genera & Species

Sabouraud’s agar

Without cycloheximide

Sabouraud’s agar with cycloheximide

 

TC

NCI&OR

F%

TC

NCI&OR

F%

 

Absidia corymbifera (Cohn) Sacc.&Trotter

62.7

9M

30

0

0

0

 

Acremonium Strictum  W.Games

91.4

14M

46.6

52.1

10M

33.3

 

Alternaria

201.2

30H

100

61.1

11M

36.6

 

A. alternata (Fries) keissler

57.7

15H

50

32.3

8M

26.6

 

A. chlamydospora Mouchacca

37.7

6L

20

0

0

0

 

A. Phragmospora Van Emden

61.4

13M

43.3

0

0

0

 

A. tenuissima (Kunze) Wiltshire

44.4

9M

30

28.8

6L

20

 

Aspergillus

927.57

30H

100

413.6

30H

100

 

A. aureolatus Munt., Cvet. & Bata

37.9

6L

20

0

0

0

 

A. clavatus Desm.

28.3

8M

26.6

0

0

0

 

A. flavus  Link

145.1

27H

90

96.4

19H

63.3

 

A. fumigatus  Freserius

129.6

25H

83.3

70.4

15H

50

 

A. glaucus Link

37.7

6L

20

0

0

0

 

A. melleus Yukawa

57.0

12M

40

0

0

0

 

A. niger  Van Tieghem

124.8

20H

66.6

69.9

16H

53.3

 

A. ochraceus  Welhelm

62.7

9M

30

58.6

8M

26.6

 

A. sydowii (Bin. & Sart.) Thom& Church

36.1

7L

23.3

31.1

6L

20

 

A. tamarii  Kita

37.7

6L

20

0

0

0

 

A. carncus (v.Tiegh) Blochwis

32.7

7L

23.3

0

0

0

 

A. resttrictus Smith

45.5

8M

26.6

13.3

2R

6.6

 

A. terreus  Thom

74.3

16H

53.3

56.6

10M

33.3

 

A. ustus  (Bain.) Thom & Church

61.4

10M

33.3

17.3

4L

13.3

 

A. versicolor (Vuill.)Tiraboschi

72.2

15H

50

56.6

11M

36.6

 

Blastomyces dermatitides Gilchrist et Stokes

57.7

9M

30

36.6

7L

23.3

 

Chrysosporium

35.2

6L

46.6

86.5

16H

56.6

 

C. tropicum Carmichael

35.2

6L

46.6

36.6

7L

23.3

 

C. indicum  (Randhawa & Sandhu) Gary

0

0

0

31.1

6L

20

 

C. parvum (Emmonsia & Ashburn) Carmichael

0

0

0

28.3

4L

26.6

 

Cladosporium

239.6

29H

96.6

144.6

22H

73.3

 

C. cladosporioides (Fries)de vries

74.3

17H

56

56.6

13M

43.3

 

C. herbarum (Pers.) Link ex Gray

72.2

15H

50

13.3

3R

10

 

 

 

 

 

 

 

 

 

 

C. oxy C. axysporium  Ber. & Curt.

70.4

16H

53.3

61.4

13M

43.3

C. sphaerospermum Penzig

13.3

3R

10

0

0

0

Cylindrocarpon  Congoense. Meyer

31.3

7L

23.3

35.5

12M

40

Cochliobolus

155.9

27H

90

66.3

18H

60

C. hawaiiensis  Alcorn

68.4

15H

50

0

0

0

C. lunatus  Nelson & Haasis

56.0

10M

33.3

43.3

11M

36.6

C. spicifer  Nelson

31.5

9M

30.0

23.0

12M

40

Cunninghmella elagans Lendner

56.6

11M

36.6

0

0

0

Fusarium

292.5

30H

100

62.9

15H

50

F. solani  (Mart) Sacc

64.0

20H

66.6

36.3

11M

36.6

F. oxysporum  Schlecht

64.0

15H

50

26.6

5L

16.6

F. pallidoroseum (Cooke) Sacc.

52.1

12M

40

0

0

0

F. semitectum Berk & Rav.

59.1

14M

46.6

0

0

0

F. dimerum  Penzig

53.3

13M

43.3

0

0

0

                           

Table (2) : Continued

Genera &Species

Raw sewage

 

Sabouraud’s agar

Without cycloheximide

Sabouraud’s agar with cycloheximide

 

TC

NCI&OR

F%

TC

NCI&OR

F%

 

 

Gibberella fujikuroi (Sawada) Ito

79.8

22H

73.3

70.2

16H

53.3

 

 

Geotrichum candidum Link

69.9

16H

53.3

66.6

15H

50

 

 

Graphium sp.

51.5

9M

30

0

0

0

 

 

Histoplasma capculatum Darling

0

0

0

16.6

4L

13.3

 

 

Microsporum

36.6

8M

26.6

63.2

11M

36.6

 

 

M. canis Bodin

0

0

0

13.3

3R

10

 

 

M. gypseum (Bodin) Guiart et Grigorakis

36.6

8M

26.6

33.3

7L

23.3

 

 

M. manginii (Loubiere) Curzi

0

0

0

16.6

4L

13.3

 

 

Mucor

107.6

20H

66.6

0

0

0

 

 

M. circinelloides Van Tieghem

64.0

13M

43.3

0

0

0

 

 

M. rasemosus Fresenius

43.6

8M

26.6

0

0

0

 

 

Penicillium

415.3

30H

100

83.44

20H

66.6

 

 

P. chrysogenum  Thom

69.5

23H

76.6

53.3

12M

40

 

 

P. raistrickii G. Smith

47.7

9M

30.0

0

0

0

 

 

P. brevicompactum Dierckx

53.3

13M

43.3

33.3

6L

20

 

 

P. citrinum Thom

32.3

7L

23.3

24.0

4L

13.3

 

 

P. funiculosum Thom

64.0

14M

46.6

36.3

11M

36.6

 

 

P. verruculosum Peyronel

20.0

4L

13.3

13.3

2R

6.6

 

 

P. expansum Link

20.0

6L

20

0

0

0

 

 

P. spinolosum Thom

59.1

10M

33.3

0

0

0

 

 

P. rubrum Stoll

36.1

8M

26.6

30

4L

13.3

 

 

Pestalotia pezizoides de Notaris

36.1

8M

26.6

0

0

0

 

 

Rhizopus stolonifer(Ehrenb)Lindt

37.7

5L

16.6

0

0

0

 

 

Scopulariopsis

112.1

21H

83.3

56.1

14M

46.4

 

 

S. bervicaulis (Sacc.) Bain.

71.1

15H

50

56.1

14M

46.6

 

 

S. brumptii  Salvanet-Duval

41.0

7L

23.3

0

0

0

 

 

Sordaria fumicola (Roberge) Cesati & de Notaris

51.1

9M

30.0

0

0

0

 

 

Sterile mycelia (white, yellow, dark)

32.3

7L

23.3

25.3

5L

16.6

 

 

Trichoderma

151.0

22H

73.3

54.8

9M

30

 

 

T. hamatum (Bon.) Bain.

47.5

12M

40.0

0

0

0

 

 

T. viride Persoon

35.1

8M

26.6

0

0

0

 

 

T.longibarchiatumiRifai

68.4

14M

46.6

54.8

9M

30

 

Yeasts

126.3

30H

100

83.3

18H

60

 

Gross total count

3309.3

1404.44

 

Number of genera    = 23

23

21

 

Number of species     =65

60

39

                                             

Occurrence remarks (OR), H= high occurrence, from 15-30 cases; M= moderate occurrence, from 8-14 cases; L= low occurrence, from 4-7 cases; R= rare occurrence, from1-3 cases (out of 30 cases).

 

 


Fungi recovered from secondary effluent :

Twenty five species belonging to twelve genera were isolated from 30 samples of secondary effluent on Sabouraoud’s dextrose agar with /or without cycloheximide and at 28 ºC (Table 3).

The total numbers of fungal propagules encountered in all samples on both media were 418.6 and 773.3 colony per ml. The prevalent genera on Sabouraoud’s dextrose agar without cycloheximide were Aspergillus (10 species), Fusarium (3), Cladosporium (2) and Penicillium (3) and they were isolated from 100, 66.6, 56.6 and 50% of the samples, constituting 37.5, 12.19, 11.04 and 10.7% of total fungi respectively. The most common species were Aspergillus flavus, A. fumigatus, A. niger, A. terreus, Cladosporium cladosporioides, Gibberella fujikuroi, Fusarium solani, F. oxysporum, Penicillium chrysogenum, and Scopulariopsis brevecaulis. They were recovered from 40-26.6 % of the samples and constituted 6.89- 26.6 % of total fungi. These species were previously recovered but with different incidences from soil receiving city sewage effluent in Egypt (Abdel-Hafez and EL-Sharouny, 1987). The remaining species were collected in low and rare frequency of occurrence. Chrysosporium was not encountered on this media.

The most dominant fungus on Sabouraoud’s dextrose agar containing cycloheximide was Aspergillus (10 species). It was isolated from 100% of the tested samples, constituted 38.17 of total fungi. The most dominant species was A. flavus. It was encountered in moderate frequency of occurrence. The remaining species were isolated in low and rare frequency of occurrence. Cladosporium (2 species), Penicillium (3), Fusarium (3) and Gibbbrella (1). They were isolated in moderate frequency of occurrence and encountered from 43.3, 43.3, 40, and 26.6 % of the total samples, representing 14.2, 13.6, 13.9 and 7.16 of the total fungi respectively.

The remaining genera and species were collected in low or rare frequency of occurrence.

 

Fungi recovered from dewatered sludge (manure):

Sixty species belonging to 25 genera were isolated from 30 samples dewatered sludge (manure) of secondary effluent on Sabouraoud’s dextrose agar with and without cycloheximide at 28 ºC (Table 4).

The prevalent genera on cycloheximide free medium were Aspergillus (11 species), Penicillium (7), Fusarium (4), Alternaria (3), Cladosporium (3), Trichoderma(3), Cochliobolus (3), Scopulariopsis (3) Mucor (2) and Gibberella (1). They were isolated in high frequency of occurrence, constituting 3.03-28.87 % of total fungi respectively. The most common species were: Aspergillus flavus, A.fumigatus, A.niger, Aspergillus Terreus, Gibberella fujikuroi, Fusarium solani and Penicillium funiculosum. They were recovered from 50-60% of the samples. On the other hand Aspergillus ochraceus, A.versicolor, C. cladosporioides, C. oxysporum, Alternaria alternata, A. tenuissima, Chaetamium globosum, Cohliobolus hawaiiencsis C.lunatus, C. spicifer, Geotrichum candidum, Fusarium oxysporum, Mucor circinoeloides, M. racemosus, Penicillium chrysogenum, Penicillium brevicompactum P. citrinum, Rhizopus oryzae, Trichoderma viride, and Scopulariopsis brevecaulis were collected in moderate frequency of occurrence. They were encountered from 26.6- 46.6% of the total tested samples, constituting 1.42-3.04 % of the total count of fungi. The remaining species were collected in low or rare frequency of occurrence.

 The prevalent genera recovered on Sabouraoud’s dextrose agar with cycloheximide were: Aspergillus (8 species), Penicillium (4), Cladosporium, (2), Fusarium (2), Alternaria(2) and Cochliobolus (2). They were isolated from 50-100 of the tested samples accounting to 30.6- 6.99. % of total fungi respectively. The most common species was: Aspergillus flavus. It was the only species recovered in high frequency of occurrence, constituting 5.26 % of the total fungi.

Aspergillus fumigatus, A. niger, A. terreus, A. ochraceus, Alternaria alternata, Cladospoium cladosporioides, Fusarium solani, Penicillium chrysogenum, P. funiculosum, Cochliobolus lunatus, Scopulariopsis brevecaulis and Gibberella Fujikuroi were recovered in moderate frequency of occurrence (Table 4).

 


Table (3) : Total counts (TC), number of cases of isolation (NCI), occurrence remarks (OR) and percentage of frequencies (F%) of fungal genera and species recorded from secondary effluent on Sabouraud’s agar,

with and without cyclohexamide at 28 oC.

Genera & Species

Sabouraud’s agar

without cyclohexamide

Sabouraud’s agar with cyclohexamide

TC

NCI&OR

F%

TC

NCI&OR

F%

Alternaria

42.6

6L

20

 

 

 

A. alternata (Fries) keissler

29.3

5L

16.6

13.3

3R

10

A. tenuissima (Kunze) Wiltshire

13.3

2R

6.6

13.3

1R

3.3

Aspergillus

290.1

30H

100

146.5

21H

50

A. flavus  Link

53.3

12M

40

31.6

8M

26.6

A. fumigatus  Freserius

50.0

12M

40

30.4

7L

23.3

A. niger  Van Tieghem

36.0

10M

33.3

25.0

7L

23.3

A. ochraceus  Welhelm

34.2

7L

23.3

17.7

3R

10

A. tamarii  Kita

20.0

2R

6.6

0

0

0

A. terreus  Thom

43.6

11M

36.6

28.5

7L

23.3

A. ustus  (Bain.) Thom & Church

23.3

4L

13.3

13.3

2R

6.6

A. versicolor(Vuill.) Tiraboschi

30.0

4L

13.3

0

0

0

Chrysosporium. Tropicum Carmichael

0

0

0

22.2

3R

10

Cladosporium

85.4

17H

56.6

59.5

8M

26.6

C. cladosporioides (Fries)de vries

48.8

12M

40

26.6

5L

16.6

C. herbarum (Pers.) Link ex Gray

34.6

5L

16.6

22.2

3R

10

Fusarium

94.3

20H

66.6

45.2

12M

40

F. dimerum  Penzig

22.2

3R

10

0

0

0

F. oxysporum  Schlecht

26.6

8M

26.6

18.6

5L

16.6

F. solani  (Mart) Sacc.

45.5

12M

40

26.6

9M

30

Gibberella fujikuroi (Sawada) Ito

43.0

13M

43.3

30.0

8M

26.6

Geotrichum candidum Link

24.7

7L

23.3

21.3

5L

16.6

Penicillium

82.8

15H

50

57.0

13M

43.3

P. chrysogenum  Thom

30.0

8M

26.6

20.9

7L

23.3

P. citrinum Thom

18.6

5L

16.6

13.3

3R

10

P. funiculosum Thom

34.2

7L

23.3

22.8

7L

23.3

Rhizopus stolinefer (Ehrenb) Lindt

26.6

6L

20

0

0

0

Scopulariopsis

34.3

9M

30

16.0

5L

16.6

S. bervicaulis (Sacc.) Bain.

18.3

8M

26.6

16.0

5L

16.6

S. brumptii  Salvanet-Duval

16.0

5L

16.6

0

0

0

Trichoderma viride Persoon

13.3

7L

23.3

0

0

0

Yeasts

36.2

14M

46.6

24.0

10M

33.3

Gross total count

733.3

436.8

Number of genera     = 12

11

10

Number of species     = 25

24

23

 

Occurrence remarks (OR), H= high occurrence, from 15-30 cases; M= moderate occurrence, from 8-14 cases; L= low occurrence, from 4-7 cases; R= rare occurrence, from1-3 cases (out of 30 cases).

 

Table (4) : Total counts (TC), number of cases of isolation (NCI), occurrence remarks (OR) and percentage of frequencies (F%) of fungal genera and species recorded from dewatered sewage (manure)

 on Sabouraud’s agar, with and without cyclohexamide at 28 oC.

 

Genera &Species

Sabouraoud’s agar

Without cyclohexamide

Sabouraoud agar

 with cyclohexamide

 

TC

NCI&OR

F%

TC

NCI&OR

F%

 

Alternaria

151.4

20H

66.6

72

18H

60.0

 

A. alternata (Fries) keissler

56.0

10M

33.3

41.6

8M

26.6

 

A. chlamydospora Mouchacca

49.5

7L

23.3

0

0

0

 

A. tenuissima (Kunze) Wiltshire

45.9

9M

30

30.4

7L

23.3

 

Aspergillus

530.4

30H

100

315.7

30H

100

 

A. flavus  Link

85.1

18H

60

54.2

15H

50

 

A. fumigatus  Freserius

80.7

18H

60

49.5

14M

46.6

 

A. glaucus Stoll

20.0

4L

13.3

0

0

0

 

A. niger  Van Tieghem

74.1

16H

53.3

51.1

12M

40

 

A. ochraceus  Welhelm

55.3

13M

43.3

38.0

7L

23.3

 

A .prasiticus Speare

23.3

4L

13.3

13.3

2R

6.6

 

A. sydowii (Bin. & Sart.) Thom & Church

29.3

5L

16.6

26.6

4L

13.3

 

A. tamari  Kita

24.4

6L

20

0

0

0

 

A. terreus  Thom

69.3

15H

50

45.3

10M

33.3

 

A. ustus  (Bain.) Thom & Church

32.3

7L

23.3

0

0

0

 

A.versicolor(Vuill.)Tirabosci

36.6

8M

26.6

37.7

6L

20

 

Chaetomium globosum Kunze

35.0

8M

26.6

33.3

6L

20

 

Chrysosporium

13.3

3R

10

37.3

6L

20

 

C. tropicum Carmichael

13.3

3R

10

24.0

5L

16.6

 

C. parvum (Emmonsia & Ashburn) Carmichael

0

0

0

13.3

1R

3.3

 

Cladosporium

133.4

26H

86.6

80.6

18H

60

 

C. cladosporioides (Fries)devries

50.7

14M

46.6

38.7

11M

36.6

 

C. herbarum (Pers.) Link ex Gray

36.1

7L

23.3

0

0

0

 

C. oxysporium  Ber. & Curt.

46.6

10M

33.3

41.9

7L

23.3

 

Cochliobolus

101.1

27H

90

66.0

15H

50

 

C. hawaiiensis  Alcorn

32.5

9M

30

0

0

0

 

C. lunatus  Nelson & Haasis

36.6

12M

40

41.3

10M

33.3

 

C. spicifer  Nelson

32.0

10M

33.3

24.7

7L

23.3

 

Doratomyces stimonitis Smith

32.5

7L

23.3

0

0

0

 

Fusarium

181.7

19H

63.3

73.7

18H

60

 

F. dimerum  Penzig

31.1

3R

10

0

0

0

 

F. oxysporum  Schlecht

46.6

10M

33.3

30.4

7L

23.3

 

F. semitectum Berk. & Rav.

28.8

6L

20

0

0

0

 

F. solani  (Mart) Sacc.

58.6

15H

50

43.3

12M

40

 

Gibberella fujikuroi (Sawada) Ito

55.8

16H

53.3

43.8

13M

43.3

 

Geotrichum candidum Link

43.3

8M

26.6

13.3

7L

23.3

Graphium sp

57.7

13M

43.3

0

0

0

 

Histoplasma capculatum Darling

0

0

0

13.3

1R

3.3

 

Macrophomina phaseolina (Tassi) Goidanich

24.7

7L

23.3

0

0

0

 

Microsporum

16.0

5L

16.6

28.8

7L

23.3

 

M. cansi Bodin

0

0

0

13.3

3R

10

 

M. gypseum Bodin

16.0

5L

16.6

15.5

6L

20

 

Mucor

66.9

16H

53.3

0

0

0

 

M. cercinoloides Van Tieghem

36.9

14M

46.6

0

0

0

 

M. rasemosus  Fresenius

30.0

8M

26.6

0

0

0

 

Penicillium

264.6

30H

100

121

22H

66.6

 

P. chrysogenum  Thom

42.0

13M

43.3

32.5

8M

20

 

P. roistrickii G. Smith

22.2

3R

10

0

0

0

 

P albidum Sopp

26.6

4L

13.3

0

0

0

 

P. brevicompactum Dierckx

36.0

10M

33.3

0

0

0

 

P. citrinum Thom

34.6

10M

33.3

34.2

7L

13.3

 

P. funiculosum Thom

54.6

15H

50

41.0

13M

23.3

 

P. rugulosum Thom

32.0

5L

16.6

0

0

0

 

P. rubrum Stoll

16.6

4L

13.3

13.3

3R

10

 

                             

Table (4) : Continued

 

Genera &Species

Sabouraoud’s agar

Sabouraoud agar with cyclohexamide

 

TC

NCI&OR

F%

TC

NCI&OR

F%

Phialophora repens (Davidson) Conant

13.3

1R

3.3

13.3

1R

3.3

 

Rhizopus

46.4

12M

40

0

0

0

 

R. nigricans (Ehrenb) Lindt

29.3

10M

33.3

0

0

0

 

R. oryzae Went & Prinsen

17.1

7L

23.3

0

0

0

 

Scopulariopsis

95.7

18H

60

32.0

10M

33.3

 

S. bervicaulis (Sacc.) Bain.

35.8

13M

43.3

32.0

10M

33.3

 

S. brumptii  Salvanet – Duval

28.8

6L

20

0

0

0

 

S. candida (Gueguen) Vuillemin

31.1

6L

20

0

0

0

 

Sordaria fumicola (Roberge) Cesati & de Notaris

20.9

5L

16.6

0

0

0

 

Setosphaeria rostrata Leonard

29.3

7L

23.3

0

0

0

 

Trichoderma

104.3

16H

53.3

22.2

3R

10

 

T. hamatum (Bon.) Bain.

33.3

6L

20

0

0

0

 

T. viride Persoon

47.7

12M

40

0

0

0

 

T.longibarchiatum Rifai

23.3

4L

13.3

22.2

3R

10

 

Trichothicium roseum (Pers.) Link ex gray

34.2

7L

23.3

26.6

4L

13.3

 

Verticillium spp..

28.5

7L

23.3

0

0

0

 

Yeasts

54.1

16H

53.3

50.4

14M

46.6

 

Gross total count

2110.92

988.1

 

Number of genera      = 25

24

16

 

Number of species     =60

55

31

 

                             

Occurrence remarks (OR), H= high occurrence, from 15-30 cases; M= moderate occurrence, from 8-14 cases; L= low occurrence, from 4-7 cases; R= rare occurrence, from1-3 cases (out of 30 cases).

 


The remaining genera and species were isolated in low or rare frequency of occurrence.

Fungi recovered from the present study have been found in large numbers in sewage (Gray, 1982; Niebl, et al., 1982; and Ismail and Abel- Sater 1994; Diener., et al., 1976; Elland 1981; Larry and Wanger, 1982; Abdel-Hafez and EL-Sharouny, 1987; and Abdel-Mallek et al., 1988).

Also numerous fungi recovered in our study are well known as mycotoxin producing fungi (Tseng, et al., 1995; Aleksandrowies, and Smyk, 1973; Enomoto and Saito, 1972; Pitt, 1994; Rippon, 1982; Sutic, et al., 1979 and Scudamore 1993).

 A certain number of the fungus species recovered in this study are pathogenic (Austwick, 1983; Wadhwani and Srivastava 1985 and Pitt 1994).They are potential facultative causative agents of different mycotic infection (Velzer and Diaz, 1985; Bunse and Merk, 1992, Sutton, et al., 1998, Hoog, et al., 2000).

 

CONCLUSION:

The workers in the sewage treatment plant most have a health risk during the treatment processes. Health risk are associated with the pathogens, which may spread through being directly, or indirectly ingested into the human body. Pathogens and toxic compounds may be disseminated through Sludge and Sewage, as well as through aerosols (Hickey and Reist, 1975; Bausum et al., 1978 and Bausum et al., 1982). The windy weather raises the question of potential human health hazard passed by pathogen-containing aerosols, in the sewage treatment plant and human communities in the surrounding areas.

The same problem regarding the health of agricultural workers occurs when spray irrigation of sewage effluent is used. Aerosol droplets containing pathogens have been reported to travel up to 1-2 Km (Adams and Spendlove, 1970). Pathogens are more effective when inhaled than when ingested (Melnick, et al., 1978).

Two sewage workers in the Ibb sewage treatment plant suffer from an allergic skin disease (Al-Zubeiry and Al-Shargaby, 1997). But in general sewage workers suffer from an increased incidence of infection or other diseases (Pahren, and Jakubowski,1980; and SWaWWA, 1978). It is important for these workers to have suitable protective clothing, shoes and gloves. Ventilation should be satisfactory, and treatment processed should be automated to the fullest extent possible.

Perhaps the most important single factor is to make sure that sewage workers know how to avoid infection and that they are aware of and use protective measures in their daily work. However, the one of the most important questions, it is the position of sewage treatment plant. Sewage treatment plant must be far away from cities and human communities and must be built in the suitable place from a public health point of view.

 

REFERENCES:

Abdeerahman Walid. A. and Shahlam A. M. (1991): Reuse of wastewater effluent for irrigation in severely arid regions” Alternative schemes- a case study”. Water Resources Development. (4), 235-246.

Abdel-Hafez, A.I.I. and El-Sharouny, H.M.M. (1987): Seasonal fluctuations of fungi: in Egyptian soil receiving city sewage effluents. Cryptogamie. M. Mycologie 8: 235-249.

Abdel-Mallek, A.Y, Moharram, A.M. and Bagy, M. M. K.(1988): Effect of soil treatment with sewage and sludge on fungal populations. J. Basic Microbiol. 28. 9/10, 565-570.

APHA-American Public Health Association (1989): Standard methods for the examination for water and wastewater. 20th ed., AWWA, WPCF, Washington, D.C., USA.

 Adams, A.P. and J.C. Spendlove (1970): Coliform aerosols emitted by sewage treatment plants, Science (169), 1218-1220.

Aleksandrowies, J., and B. Smyk (1973): The association of neoplastic diseases and Mycotoxins in the environment. Texas. Rep Biol, Med. 31.715. (Torry and Marth, 19770).

Austwick, P.k.C. (1983): Fungi as a cause of human and animal diseases. In Plant Pathologists pocket book (2nd ed. Johnson J. & Boot C. Commonwealth Mycological Institute, Kew, Surrey, England.

Bausum, H. T., Brockett, B. E., Schumacher, P. W., Schaub, S. A., McKim, H. L. and Bates. (1978): Microbiological aerosols from a field source during Sprinker irrigation with wastewater, [273-280] In International symposium on land treatment of Wastewater, Vol. 2. U.S. Army Corps of Engineers. Hanover, N.H.

Bausum, H.T., Schaub, S. A., Kenyon, K. F. and Small, M. J. (1982): Comparison of Coliphage and Bacterial Aerosols Spray Irrigation Site. Applied and Environ. Microbiology, Vol. 43, N0. 1. PP. 28-38

Bouwer H. (1982): wastewater reuse in arid areas, PP. 137-180 in water reuse, Ann Arbor Science Puplishers, Ann Arbor.

Bunse, T. and Merk H. (1992): Mycological aspects of inhalative mould allergies. Mycoses; 35: 61- 66.

Diener. U. Morgan-Jones, G. Hagles, W.M. and Davis, D.(1976): Myco-flora of activated sewage sludge. Mycopathologia 58:115-116.

Domsch, K. W., Gams, W. & Anderson, T. H. (1980): Compendium of soil fungi. Academic Press, London.

Doyle, Michael P. et al.1997. Food Microbiology fundamentals and frontiers. ASM Press, Washington D.C. pp. 137-38.

Dunlop, S. G and W. L. Wang.(1961): Studies on the use of sewage effluent for irrigation of ttruckcrops. J. Milk Food Technol. 24:44-47.

Dudley, D.J., Guentzel, M. N., Ibarra, M. J., Moore, B.E and Sagik, B.P. (1980): Enumeration of Potentially pathogenic bacteria from sewage sludges. Appl. Environ. Microbiol. 39: 118-126.

Elland, F. (1981): The effects of application of sewage on micro-organisms in soil. Danish J. Plant Soil Sci. 1534:39-46.

Ellis, M.B. (1976): More Dematiaceous Hyphomycetes. Commnwealth Mycolog-ical Institute, Kew, Surrey, UK.

Enomoto. M and Saito, M.(1972) : Carcinogens produced by fungi Ann. Rev. Microbiol. 26 : 279-312.

El-Zaemey, A.K. (1992): Wastewater reuse practices in Yemen. In Prroceeding of the National Seminar on Wastewater Reuse. May 9-11, 1992. PP 35-43.

Emeral, G. and and Kayser, R. (1984): German experience in ruse of wastewater for agriculture purpose, in Water Reuse. Institute for Scientific Cooperation, Tubingen, Germany.

Epstein L., Kimberly, D. and Safir, G(1982):Plant diseases in an old field ecosystem irrigated with municipal wastewater. J. Environ. Qual. 11: 65-69.

FAO (1992): Wastewater treatment and use in Agriculture. Rome, 1992

Feachem, R. G., Bradly D. G., Garelic H and Mara, D. D.(1983): Sanitation and dis ease: Health Aspect of Excreta and Wastewater Management. John Wiley, Chichester.

Gray, N.F. (1982): A key to the major slim-forming organisms of sewage fungus. J. Life Sci. R Dublin Sco., 4, 97-112.

Halderson, J.L. & Zons, D.R. (1978): Use of Municipal Sewage in Reclamation of Soils, Am.Soc. Agron., PP. 355-377.

Hickey, J.L.S., and P. C. Reist (1975): Health significance of air-borne microorganisms from Wastewater treatment processes. J. Water Pollut. Control Fed. 47:2741-2757.

Hoog, G. S., Cuarro, J., Gene, J. and Figueras. (2000): Attlas of Clinical Fungi. Send edition. Centraalbureau voor Shimmelcultures/Rovira i Virgili.

Ismail. M. A. and Abdel-Sater, M. A. (1994): Mycoflora inhabiting water closet environments. Mycoses 37:53-57.

Kirk, John H. Pathogens in Manure. http://www.vetmed.ucdavis.edu/vetext/INF-DA/Pathog-manure.pdf>Accessed 2003 Nov 7.

Kowal, N.E., Pahren, H. R. and Akin, E. W. (1980): Microbiological health effects associated with the use of municipal Wastewater for irrigation, p. 1-50. In International Conference on Cooperative Research Need for the Renovation and reuse of Municipal Wastewater for Agriculture. Secretaria de Agricltura y Recursos Hidraulicos, Mexico, D. F.

Larry M.Z. and Wanger G.H. (1982): Bacterial growth and fungal genera distribution in soil amended with sewage sludge containing cadmium, chromium and copper. Soil Sci. 134: 364-370.

Larkin, P.E., Tierney, J.T., Lovett, J.,Van Donsel, D. and Francis. (1978): Land application of sewage wastes: potential for contamination of foodstuffs and agricultural soils by viruses bacterial pathogens and parasites, P. 215-223. In H.L McKim(ed.), State of knowledge in land treatment of wastewater. U. S. Army Corps of Enginees, CRRL, Hanover, N. H.

Madancy, R. S(1981): The role of federal and state agencies to stimulate, coordinate and fund research related to the renovation and reuse of municipal wastewater in the United States, In municipal Wastewater in Agriculture, Academic Press, New York.

Mara D.D and Cairncross S(1989): Guidelines of the safe use of wastewater and excreta in agriculture and aquaculture – measure for public health protection. World Health organization, Genevv

Melnick, J. L, Gerba C. P. and Wallis C. (1978): Virus in Water, Bulletin of the World Health Organization, Vol. 56, N 4, pp 499-508.

Moss, E. S and McQuown, A. L. (1969): Atlas of medical mycology, 3rd. ed. Baltimore, Williams and Wilkins Co.

Moubasher, A. H. (1993): Soil Fungi in Qatar and Other Arab Countries. The Scientific and Applied Research Center,Univ. of Qatar.

Niebl, A., Lacy, A. M. and Aguero, F. (1982): Mycological analysis of facultative stabilization deposit of sewage of Almlyoa de Rio State of Mexico. Rev. Latnoam Microbiol., 24, 59-63.

Neis, U. (1984):‘Wastewater Reuse’, in Selected Reports on Water Reuse in Urban and Rural Aereas, University of Karlsruhe and Alfred Bittner, Tubing, Germany.

Nell, J. H., Engelbrecht, J. F. P., Smith, L. S &Nupeen, E. M(1981): Wat. Sci. Tech. 13, 153.

Pahren, H., and Jakubowski W. (1980) (ed): Wastewater aerosols and disease. U.S. Environment Protection Agency, Cincinnati, Ohio.

Pennsylvania Environmental Network. 2002 Apr 4. National Sludge Alliance Fact Sheet #129. <http://www.penweb.org/ issues/sludge/129.htm>Accessed 2003 Nov 11.

Pitt J.I. (1994): The current role of Aspergillus and Penicillium in human and animal health. J. of Medical and Veterinary Mycology 32.1,17-32.

Raper. K. B. and Fennell. D. (1965): The Genus Aspergillus. The Williams & Wilkins Company, Baltimore. USA.

Raper, K. B. and Thom, C. (1949): A manual of Penicillium. p.875. Williams, Baltimore, USA.

Rippon, J W. (1982): Medical mycology. the pathogenic fungi and pathogenic actinomyctes. W. B. saunderes Co, Philadelphia.

Rosas, I. Baez, A. and Coutino, M. (1984):Bacteriological Quality of Crops Irrigation with Wastewater in the Xochimilco plots, Mexico City, Mexico. Applid and Environmental Microbiology, May 1984, P. 1074-1079.

Scudamore, K. A., Clarke, J.H. and Hetmanski. (1993). Isolation of Penicillum strains producing ochratoxin A, citrinin, xathomegnin, viomellein and vioxanthin from stored cereal grains. Letters in Applied Microbiology. 17. 82-87.

Shuval H. I. (1991): The development of health effects guideline for wastewater reclamation. Wat. Sci. Tech. Vol. 24, pp.149-155.

Shuval H. I., Adin A., Fattal B., Rawitz and Yekutiel P. (1986): Wastewater irrigation in Developing countries: Health effects and technical solutions. Technical Paper No. 51. World bank, Washington DC.

Simpson, J. R. (1982): Water pollution control in developing areas: proplems and needs. Water Science and Technology 14, 1353-1373.

Smith, Jr. J.E. (2003): Fate of Pathogens during the Sewage Sludge Treatment. <http://www.precisionlabsinc.com/Sludge/Smith-EPA.htm>. Accessed 2003 Nov1.

Stone, R. J.; Ekwue, E.I and Clarke, R.O. Engineering properties of sewage sludge in Trinidad. Journal of Agricultural Engineering Research, 1998, vol. 70, p. 221-230.

Strachan, S.D., Nelson, D. W & Sommers, L (1983): Envir. Qual. 12, 69.

Sutic, M., Mitic, S., and SvilA.R. N. (1979). Aflatoxin in milk and milk products Mijekarstov. 29 (4) : 74- 80 Dairy Sci. Abst. 42 (2) ; 801. (1980).

UN Department of Technical Coorporation for Development (1985): The use of non-convenitional water recources in developening countries. Natural Water Resources Series No. 14. United Nation DTCD, New York

Sutton, D., Fothergill, A. and Rinaldi, M. (1998): Guide to Clinically Significant fungi. Williams and Wiknis. Baltimore.

Swedish Water and Wastewater Works Association (SWaWWA). (1978): Health risk in Sewage System Swedish Water and Wastewater Work, Association. Stockholm.

Takatori, K.,Ohta,T., Lee, H., Akiyama, K. and Shida, T.(1994): Fungi related to allergies. J. Medical Mycology 35: 409-414.

Tchobanogeuos, G. (1979): Wastewater Engineering: Treatment Disposal Ruse 2nd ed. PP. 56-141 and 829-864. Boston : McGraw Hill.

Tseng, T. C., Tu, J. C., Tzean S. S. (1995). Mycoflora and mycotoxins in dry bean (Phaseolus vulgaris) produced in Taiwan and in Ontario, Canada. Botanical Bulletin of Academia Sinica 36 (4): 229-234.

Velez H. and Diaz F. (1985): Onychomycosis due to saprophytic fungi. Mycopthologia 91; 87-92.

Wadhwani K. and Srivastava A. (1985): Some cases of onychomycosis from north India in different working environments. Mycopathologia 92: 149-155.

WHO (1981) The risk to health of microbes in sewage sludge applied to land EURO Reports and studies No. 54. Regional office for Europe, WHO, Copenhagen. pp.10-18.

WHO(1989): Health guideline for the use of wastewater in agriculture and aquaculture. Technical report No. 778. WHO, Geneva 74 p.

Woolcock J.B., 1991. Microbiology of Animals and Animal Products. Elsevier, New York. pp. 210 – 212.


 

الأحياء المجهرية التي تعيش في مياه المجاري والمخلفات الثانوية السائلة والوحل الجاف في محطة التنقية في إب- الجمهورية اليمنية

عبد الرحمن الزبيري

قسم الميکروبيولوجي - کلية العلوم- جامعة تعز - اليمن

 

تم عزل الفطريات والبکتيريا من عينات مياه المجاري الخام والمخرجات الثانوية والمواد الصلبة (الوحل الجاف) بعد التجفيف المستخدمة في هذه الدراسة من بيئات غذائية مختلفة عند درجة تحضين 37ºم للبکتيريا الممرضة و28º م. وقد تم عزل عدد من البکتيريا الممرضة والمحتملة، وکذلک عدد من الفطريات الممرضة أو التي يحتمل أن تسبب أمراض في ظروف خاصة.

وقد تم عزل البکتيريا , faecal Streptococcus, Streptococcus pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus, Escherechia Coli  ، کما تم عزل  Salmonella spp.من مياه المجاري ومن المخلفات السائلة. کما أن Shigella spp  قد عزلت من مياه المجاري فقط. عدد من البکتيريا المعزولة مسببة للأمراض ومکونة للسموم وتشکل خطورة على حياة الحيوان والإنسان، کما تم عزل عدد کبير من الفطريات من مياه الجاري ومخلفاتها السائلة والصلبة على بيئة السبرود بدون السيکلوهيسامايد عند درجة حرارة تحضين 28ºم منها:

Aspergillus flavus, A. fumigatus, A.niger, Acremonium stictum, terreus, A. versicolor,  Cladosporium cladosporoides, C. herbarum, C. oxysporum, Gibberella fujikuroi, Cohliobolules hawaiiensis, Fusarium solani, F. oxysporum, Penicillium chrysogenum, Geotrichium candidum and  Scopulariopsis brevecaulis.

وعلى بيئة السبرود مع السيکوهيکسامايد عزلت الأنواع الفطرية الآتية :

Aspergillus flavus, A. fumigatus, A. niger, Gibberella fujikuroi  and Geotrichium candidum,

وقد عزلت فطريات ممرضة بأعداد مختلفة على هذه البيئة، وهي:

Chrysosporium tropicium C. indicum, C. parvum, Geotrichum candidum, Histoplasma capculatum Microsporum  cansi, M. gypseum  and M. manginii.

REFERENCES:
Abdeerahman Walid. A. and Shahlam A. M. (1991): Reuse of wastewater effluent for irrigation in severely arid regions” Alternative schemes- a case study”. Water Resources Development. (4), 235-246.
Abdel-Hafez, A.I.I. and El-Sharouny, H.M.M. (1987): Seasonal fluctuations of fungi: in Egyptian soil receiving city sewage effluents. Cryptogamie. M. Mycologie 8: 235-249.
Abdel-Mallek, A.Y, Moharram, A.M. and Bagy, M. M. K.(1988): Effect of soil treatment with sewage and sludge on fungal populations. J. Basic Microbiol. 28. 9/10, 565-570.
APHA-American Public Health Association (1989): Standard methods for the examination for water and wastewater. 20th ed., AWWA, WPCF, Washington, D.C., USA.
 Adams, A.P. and J.C. Spendlove (1970): Coliform aerosols emitted by sewage treatment plants, Science (169), 1218-1220.
Aleksandrowies, J., and B. Smyk (1973): The association of neoplastic diseases and Mycotoxins in the environment. Texas. Rep Biol, Med. 31.715. (Torry and Marth, 19770).
Austwick, P.k.C. (1983): Fungi as a cause of human and animal diseases. In Plant Pathologists pocket book (2nd ed. Johnson J. & Boot C. Commonwealth Mycological Institute, Kew, Surrey, England.
Bausum, H. T., Brockett, B. E., Schumacher, P. W., Schaub, S. A., McKim, H. L. and Bates. (1978): Microbiological aerosols from a field source during Sprinker irrigation with wastewater, [273-280] In International symposium on land treatment of Wastewater, Vol. 2. U.S. Army Corps of Engineers. Hanover, N.H.
Bausum, H.T., Schaub, S. A., Kenyon, K. F. and Small, M. J. (1982): Comparison of Coliphage and Bacterial Aerosols Spray Irrigation Site. Applied and Environ. Microbiology, Vol. 43, N0. 1. PP. 28-38
Bouwer H. (1982): wastewater reuse in arid areas, PP. 137-180 in water reuse, Ann Arbor Science Puplishers, Ann Arbor.
Bunse, T. and Merk H. (1992): Mycological aspects of inhalative mould allergies. Mycoses; 35: 61- 66.
Diener. U. Morgan-Jones, G. Hagles, W.M. and Davis, D.(1976): Myco-flora of activated sewage sludge. Mycopathologia 58:115-116.
Domsch, K. W., Gams, W. & Anderson, T. H. (1980): Compendium of soil fungi. Academic Press, London.
Doyle, Michael P. et al.1997. Food Microbiology fundamentals and frontiers. ASM Press, Washington D.C. pp. 137-38.
Dunlop, S. G and W. L. Wang.(1961): Studies on the use of sewage effluent for irrigation of ttruckcrops. J. Milk Food Technol. 24:44-47.
Dudley, D.J., Guentzel, M. N., Ibarra, M. J., Moore, B.E and Sagik, B.P. (1980): Enumeration of Potentially pathogenic bacteria from sewage sludges. Appl. Environ. Microbiol. 39: 118-126.
Elland, F. (1981): The effects of application of sewage on micro-organisms in soil. Danish J. Plant Soil Sci. 1534:39-46.
Ellis, M.B. (1976): More Dematiaceous Hyphomycetes. Commnwealth Mycolog-ical Institute, Kew, Surrey, UK.
Enomoto. M and Saito, M.(1972) : Carcinogens produced by fungi Ann. Rev. Microbiol. 26 : 279-312.
El-Zaemey, A.K. (1992): Wastewater reuse practices in Yemen. In Prroceeding of the National Seminar on Wastewater Reuse. May 9-11, 1992. PP 35-43.
Emeral, G. and and Kayser, R. (1984): German experience in ruse of wastewater for agriculture purpose, in Water Reuse. Institute for Scientific Cooperation, Tubingen, Germany.
Epstein L., Kimberly, D. and Safir, G(1982):Plant diseases in an old field ecosystem irrigated with municipal wastewater. J. Environ. Qual. 11: 65-69.
FAO (1992): Wastewater treatment and use in Agriculture. Rome, 1992
Feachem, R. G., Bradly D. G., Garelic H and Mara, D. D.(1983): Sanitation and dis ease: Health Aspect of Excreta and Wastewater Management. John Wiley, Chichester.
Gray, N.F. (1982): A key to the major slim-forming organisms of sewage fungus. J. Life Sci. R Dublin Sco., 4, 97-112.
Halderson, J.L. & Zons, D.R. (1978): Use of Municipal Sewage in Reclamation of Soils, Am.Soc. Agron., PP. 355-377.
Hickey, J.L.S., and P. C. Reist (1975): Health significance of air-borne microorganisms from Wastewater treatment processes. J. Water Pollut. Control Fed. 47:2741-2757.
Hoog, G. S., Cuarro, J., Gene, J. and Figueras. (2000): Attlas of Clinical Fungi. Send edition. Centraalbureau voor Shimmelcultures/Rovira i Virgili.
Ismail. M. A. and Abdel-Sater, M. A. (1994): Mycoflora inhabiting water closet environments. Mycoses 37:53-57.
Kirk, John H. Pathogens in Manure. http://www.vetmed.ucdavis.edu/vetext/INF-DA/Pathog-manure.pdf>Accessed 2003 Nov 7.
Kowal, N.E., Pahren, H. R. and Akin, E. W. (1980): Microbiological health effects associated with the use of municipal Wastewater for irrigation, p. 1-50. In International Conference on Cooperative Research Need for the Renovation and reuse of Municipal Wastewater for Agriculture. Secretaria de Agricltura y Recursos Hidraulicos, Mexico, D. F.
Larry M.Z. and Wanger G.H. (1982): Bacterial growth and fungal genera distribution in soil amended with sewage sludge containing cadmium, chromium and copper. Soil Sci. 134: 364-370.
Larkin, P.E., Tierney, J.T., Lovett, J.,Van Donsel, D. and Francis. (1978): Land application of sewage wastes: potential for contamination of foodstuffs and agricultural soils by viruses bacterial pathogens and parasites, P. 215-223. In H.L McKim(ed.), State of knowledge in land treatment of wastewater. U. S. Army Corps of Enginees, CRRL, Hanover, N. H.
Madancy, R. S(1981): The role of federal and state agencies to stimulate, coordinate and fund research related to the renovation and reuse of municipal wastewater in the United States, In municipal Wastewater in Agriculture, Academic Press, New York.
Mara D.D and Cairncross S(1989): Guidelines of the safe use of wastewater and excreta in agriculture and aquaculture – measure for public health protection. World Health organization, Genevv
Melnick, J. L, Gerba C. P. and Wallis C. (1978): Virus in Water, Bulletin of the World Health Organization, Vol. 56, N 4, pp 499-508.
Moss, E. S and McQuown, A. L. (1969): Atlas of medical mycology, 3rd. ed. Baltimore, Williams and Wilkins Co.
Moubasher, A. H. (1993): Soil Fungi in Qatar and Other Arab Countries. The Scientific and Applied Research Center,Univ. of Qatar.
Niebl, A., Lacy, A. M. and Aguero, F. (1982): Mycological analysis of facultative stabilization deposit of sewage of Almlyoa de Rio State of Mexico. Rev. Latnoam Microbiol., 24, 59-63.
Neis, U. (1984):‘Wastewater Reuse’, in Selected Reports on Water Reuse in Urban and Rural Aereas, University of Karlsruhe and Alfred Bittner, Tubing, Germany.
Nell, J. H., Engelbrecht, J. F. P., Smith, L. S &Nupeen, E. M(1981): Wat. Sci. Tech. 13, 153.
Pahren, H., and Jakubowski W. (1980) (ed): Wastewater aerosols and disease. U.S. Environment Protection Agency, Cincinnati, Ohio.
Pennsylvania Environmental Network. 2002 Apr 4. National Sludge Alliance Fact Sheet #129. <http://www.penweb.org/ issues/sludge/129.htm>Accessed 2003 Nov 11.
Pitt J.I. (1994): The current role of Aspergillus and Penicillium in human and animal health. J. of Medical and Veterinary Mycology 32.1,17-32.
Raper. K. B. and Fennell. D. (1965): The Genus Aspergillus. The Williams & Wilkins Company, Baltimore. USA.
Raper, K. B. and Thom, C. (1949): A manual of Penicillium. p.875. Williams, Baltimore, USA.
Rippon, J W. (1982): Medical mycology. the pathogenic fungi and pathogenic actinomyctes. W. B. saunderes Co, Philadelphia.
Rosas, I. Baez, A. and Coutino, M. (1984):Bacteriological Quality of Crops Irrigation with Wastewater in the Xochimilco plots, Mexico City, Mexico. Applid and Environmental Microbiology, May 1984, P. 1074-1079.
Scudamore, K. A., Clarke, J.H. and Hetmanski. (1993). Isolation of Penicillum strains producing ochratoxin A, citrinin, xathomegnin, viomellein and vioxanthin from stored cereal grains. Letters in Applied Microbiology. 17. 82-87.
Shuval H. I. (1991): The development of health effects guideline for wastewater reclamation. Wat. Sci. Tech. Vol. 24, pp.149-155.
Shuval H. I., Adin A., Fattal B., Rawitz and Yekutiel P. (1986): Wastewater irrigation in Developing countries: Health effects and technical solutions. Technical Paper No. 51. World bank, Washington DC.
Simpson, J. R. (1982): Water pollution control in developing areas: proplems and needs. Water Science and Technology 14, 1353-1373.
Smith, Jr. J.E. (2003): Fate of Pathogens during the Sewage Sludge Treatment. <http://www.precisionlabsinc.com/Sludge/Smith-EPA.htm>. Accessed 2003 Nov1.
Stone, R. J.; Ekwue, E.I and Clarke, R.O. Engineering properties of sewage sludge in Trinidad. Journal of Agricultural Engineering Research, 1998, vol. 70, p. 221-230.
Strachan, S.D., Nelson, D. W & Sommers, L (1983): Envir. Qual. 12, 69.
Sutic, M., Mitic, S., and SvilA.R. N. (1979). Aflatoxin in milk and milk products Mijekarstov. 29 (4) : 74- 80 Dairy Sci. Abst. 42 (2) ; 801. (1980).
UN Department of Technical Coorporation for Development (1985): The use of non-convenitional water recources in developening countries. Natural Water Resources Series No. 14. United Nation DTCD, New York
Sutton, D., Fothergill, A. and Rinaldi, M. (1998): Guide to Clinically Significant fungi. Williams and Wiknis. Baltimore.
Swedish Water and Wastewater Works Association (SWaWWA). (1978): Health risk in Sewage System Swedish Water and Wastewater Work, Association. Stockholm.
Takatori, K.,Ohta,T., Lee, H., Akiyama, K. and Shida, T.(1994): Fungi related to allergies. J. Medical Mycology 35: 409-414.
Tchobanogeuos, G. (1979): Wastewater Engineering: Treatment Disposal Ruse 2nd ed. PP. 56-141 and 829-864. Boston : McGraw Hill.
Tseng, T. C., Tu, J. C., Tzean S. S. (1995). Mycoflora and mycotoxins in dry bean (Phaseolus vulgaris) produced in Taiwan and in Ontario, Canada. Botanical Bulletin of Academia Sinica 36 (4): 229-234.
Velez H. and Diaz F. (1985): Onychomycosis due to saprophytic fungi. Mycopthologia 91; 87-92.
Wadhwani K. and Srivastava A. (1985): Some cases of onychomycosis from north India in different working environments. Mycopathologia 92: 149-155.
WHO (1981) The risk to health of microbes in sewage sludge applied to land EURO Reports and studies No. 54. Regional office for Europe, WHO, Copenhagen. pp.10-18.
WHO(1989): Health guideline for the use of wastewater in agriculture and aquaculture. Technical report No. 778. WHO, Geneva 74 p.
Woolcock J.B., 1991. Microbiology of Animals and Animal Products. Elsevier, New York. pp. 210 – 212.