

MICROFLORA INHABITING RAW SEWAGE, SECONDARY EFFLUENT AND DEWATERED SLUDGE IN IBB, YEMEN REPUBLIC

Al-Zubeiry, A. H. S.

Microbiology Department, Faculty of Science, Taiz University, Yemen

ABSTRACT :

The microflora of raw sewage, secondary effluent and dewatered sludge (manure) were investigated. Microbial total counts were relatively higher in raw sewage than in secondary effluent and dewatered sludge. A mongst the bacterial groups recorded in the present investigation, faecal Streptococcus, Streptococcus pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus and Escherechia Coli were found in the three substrates at 37 °C. On the other hand, Salmonella spp.were isolated from raw sewage and secondary effluent, but Shigella spp were isolated only from raw sewage. Some of these bacterial species can produce toxins and cause infections directly or indirectly through contact with sewage sludge. The most common fungal species in the tested substrates on Sabouraud's agar, without cyclohexamide at 28°C were: Aspergillus flavus, A. fumigatus, A. niger, Acremonium strictum, Aspergillus. terreus, A. versicolor, Cladosporium cladosporioides, C. herbarum, C. oxysporum, Gibberella fujikuroi, Cohliobolules hawaiiencsis, Fusarium solani, F. oxysporum, Penicillium chrysogenum, Geotrichium candidum and Scopulariopsis brevecaulis. On Sabouraoud's dextrose agar with cycloheximide the most frequently isolated species were: Aspergillus flavus, A. fumigatus, A. niger, Gibberella fujikuroi and Geotrichium candidum. Some pathogenic fungi were also, isolated, but in various incidences and numbers such as Chrysosporium tropicium C. indicum, C. parvum, Geotrichum candidum, Histoplasma capsulatum, Microsporum canis, M. gypseum and M. manainii.

INTRODUCTION:

Wastewater generated from urban and rural areas after domestic use is a large source of water. It is mainly comprised of water (99,9%) together with relatively small concentrations of suspended and dissolved organic and inorganic solids (Mara and Cairncross, 1989 and UN Department of technical cooperation for development, 1985).

Among the organic substances present in sewage are carbohydrates, lignin, fats, soaps,

synthetic detergents, proteins and their decomposition products, as well as various natural and synthetic organic chemicals from process industries.

Sewage sludge (wastewater) is an important source of organic matter (Stranchan., *et al.*,1983) and plant nutrients. Halderson and Zonz, (1978); Nell *et al.*, (1983) found that the application of sewage sludge increased the nutrient status of the soil. It may increase agricultural production. Sewage sludge also contains pathogenic macro and microorganisms, which can give rise to potential hazard (Abderrahman and Shahlam, 1991) to the health of humans, animals and plants. The health risk associated with wastewater is a major deterrent in wastewater reuse for irrigation. Health risk are associated with pathogens, which may spread diseases through being directly or indirectly ingested into the human body (Dudley *et al.*, 1980; WHO, 1981; 1989; FAO, 1992; Feachem *et al.*, 1983; Shuval, 1991; and Shuval *et al.*, 1986) and fungi (Velez and Diaz, 1985; and Bunes and Merk, 1992).

Pathogens pose the greatest threat to public health; especially when the receiving water is used for domestic recreation on agricultural purpose (Tchobanogeuos, 1979).

The agricultural value of sludge mainly derives from its nutrient content. Sludge, like other organic fertilizers, has long-term beneficial effects on the soil: organic matter contained in sewage sludge improves the physical properties of soil such as aggregate stability, water retention and infiltration, and reduce soil compactibility (Stone *et al.* 1998). In addition to nutritious content, the organic matter and the C/N ratio are important parameters of the sludge fertilizing potential.

There are many conditions, which may increase the health risk of wastewater reuse in agriculture. The first of these conditions is survival time of pathogenic microorganisms. The natural survival time of pathogenic organisms depends on the carrying medium and the environment. The survival time is a time during which pathogens are capable of causing diseases if they came into contact with a host under favorable condition.

The second of these conditions are pathogenic bacteria, viruses, protozoa, nematodes and fungi capable of causing diseases which can be found in foods contaminated with sewage water(Bryan,1977; Kowal *et al.*, 1980, and Rosas, 1984). They also can be found harmful to the soil, crops and grazing animals.

On the other hand Pathogenic microorganisms can be transferred from raw sewage and secondary effluent during the irrigation process, directly or in directly to the plants, animal and human, also make various infectious diseases.

Different authors have proved that 5 vegetables are contaminated with microorganisms, when they are irrigated with sewage water and when the soil is fertilized with manure because both usually contain great amounts of pathogenic organisms (Epstein *et al.*, 1982 and Larkin *et al.*, 1978), and when these vegetables are consumed, they could produce diarrhea, salmonellosis, Shigellosis, etc.(Dunlop and Wang, 1961; Kowal *et al.*, 1980 and Rosas *et al.*, 1984).

During the last three decades wastewater reclamation, recycling and reuse in agriculture have received much attention around the world, especially in the arid and semi-arid regions (Neis, 1984; Bouwer, 1982; Emeral and Kayser, 1984; and Madancy, 1981).

Yemen like many other countries in arid and semi-arid regions suffers; from shortage of water resources, so that reuse treated sewage in agriculture is an important question. That is because agriculture seems to be the greatest consumer of water. Annual water consumption has increased dramatically in the last twenty years due to significant social, industrial and agricultural developments. More than 90% of the current water demand is coming from nonrenewable groundwater resources in the country.

Farmers in Yemen, living near the disposal sites of urban wastewater, especially in some of the large cities such as Sana'a, Taiz, Aden, and Ibb are already practicing the reuse of nontreated or partially treated wastewater. (El-Zaemey, 1992). Several countries have produced guidelines, which regulate sewage sludge reuse on the basis of risk to the public health and the environment, however, in Yemen; such guidelines are not established yet.

In Yemen no investigations have been carried out on the microflora of the sewage and knowledge on the distribution of pathogenic bacteria and fungi in sewage and sludge is absent. Thus, the present study is conducted on the composition, numbers and incidence of various species of bacteria and fungi inhabiting sewage before and after purification.

MATERIALS AND METHODS:

Collection of Sewage Samples:

Thirty samples of each of raw sewage, secondary effluent (500 ml each) and manure (dewatered sludge) (250 gr) were collected from Ibb sewage treatment plant. Each sample was placed in a clean bottle, which was capped tightly and transferred to the laboratory for immediatly bacteriological and mycological analyses.

Five bacterial isolation media were used namely: Nutrient agar for plate count analysis, MF, M-endobroth, MFC agar, MacKonky agar and SS agar. 0.1 ml of each of secondary effluent and raw sewage dilution was used per plate. Three plates of each medium were used for each sewage samples. The counts were calculated per 1ml of sewage, for raw and secondary effluent, and per g dry weight for manure.

Isolation and Identification of bacteria:

Bacteria were encountered using the plate count on nutrient agar.

Total Coliform (TCF) were analyzed using the membrane filtration procedure as described by the APHA (1989) and they were cultured on M-Endo broth (APHA, 1989).

Faecal Coliforms (FC) and faecal Streptococcus (FS) were analyzed using the membrane filtration procedure described by the APHA, (1989). Faecal Coliforms were cultured on M-FC agar (Difco) while faecal *Streptococci* were grown on m-enterococcus agar (Difco).

Salmonella concentration was determined using a five tube most probable number (MPN) procedure. Four dilution containing 10⁻¹/ ml, 10⁻ ²/ml, 10⁻³/ml and 10⁻⁴/ ml of raw sludge and Five other tubes for effluent with four dilution containing 10^{-1} /ml, 10^{-2} /ml, 10^{-3} /ml and 10^{-4} ml of secondary effluent were used. Samples were per-enriched in buffered peptone water (BPW) at 37°C overnight after which 10⁻¹/ml of perenrich culture was transferred to Rappaport-Vassilladis broth (RV). Enrichment cultures were incubated at 43°C and were subcultured to xylose - deoxycolate agar(XLD) after 24 and 48 h. Presumptive Salmonella were purified on MacConky agar without salt and were screened using biochemical and serological tests.

Isolation and Identification of fungi:

Two isolation media were used for isolation of fungi. Sabouraoud's dextrose agar (Moss and Mcquown, 1969) containing 40 g/l dextrose, 10 g/l peptone, 20 g agar/l, 40 mg/l Streptomycin, 20 units of Penicillin /ml and 0.05% cycloheximide (Actidione) and Sabouraoud's dextrose agar containing 40 mg/l Streptomycin and 0.003% rose-Bengal. One ml of the appropriate of each of secondary effluent and raw sewage and manure was used per plate. Three plates were used for each sewage sample. The plates were incubated at 28°C for 7 days. The counts were calculated per 1ml of sewage. Identification was carried out by using the taxonomic references of Raper and Fennell (1965), Domsch *et al.* (1980), Raper and Thom (1949); Ellis (1976); and Moubasher (1993).

RESULTS AND DISCUSSION:

Bacteria recovered from raw sewage, secondary effluent and manure:

The total count of bacteria in the raw sewage, secondary effluent and dewatered sludge were 8.2×10^{10} C/ml, 6.7×10^6 C/ml and 5.3×10^6 C/g respectively (Table 1). The most common bacteria in the above substrates was faecal coliform. It was isolated samples constituting 9.4×10^8 C/ml, 5.2×10^3 C/ml and 4.2×10^2 C/g respectively. The results in Table (1) show also that the most common bacteria was *Escherichia. Coli.* It was isolated from all samples of the three substrates constituting 7.6×10^6 , 2.8×10^3 C/ml and 1.2×10^2 C/g respectively.

Salmonella spp. were isolated from 9 and 3 samples of raw sewage and secondary effluent $(2.1 \times 10^2, 1.3 \times 10 \text{ C/ml respectively}).$

Some authors reported that the Salmonella spp. can infect or contaminate nearly all living vectors from insects to mammals. (WHO, 1981). Human Salmonella infections and other bacterial infections can be caused from the direct or indirect contact with sewage sludge (Pennsylvania Environmental Network, 2002, WHO, 1981 and Doyle *et al.*, 1997). Most serotypes of Salmonella are pathogenic to humans. A common route of infection for humans is through ingestion of products contaminated with animal faeces (Woolcock, 1991).

Shigella spp were encountered only from raw sewage (1.1x10 C/ml.). Some bacterial

species were also isolated in this study from raw sewage, secondary effluent and dewatered sludge (manure). Some of them can be caused infections directly or indirectly contact with sewage sludge.

Faecal Streptococcus, Streptococcus pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus cereus were also isolated in the present study from the three substrates. High bacterial count were detected in all samples of the three substrates investigated (Table 1). Faecal coliform bacteria were also detected in high numbers in tested substrates.

Some of these bacteria can produce toxins and cause infections directly or indirectly to human. The great numbers of bacterial colonies were isolated from sewage sludge (raw sewage, secondary effluent and manure, 30 samples of each) at 37°C. The most common bacteria were faecal coliform (Table 1). Simpson (1982) reported that Sewage contain the wide spectrum of Bacteria. The most common bacteria in sewage sludge are the enteric bacteria (Coliforms, Shigellae, Salmonella, etc.). Coliforme bacteria can be contain a rare strain of E.coli that is pathogenic to humans (Kirk, 2003). The typical concentration of E. coli found in untreated sewage sludge is 1000,000 wet weight/g of total solids (Smith, 2003).

The results in this study are analogous to those obtained by several workers in many parts of the world (Kirk, 2003, Smith, 2003 and Simpson, 1982). Results revealed also that the bacterial concentration is high and many of them are Pathogens. Our results in this aspect correspond with those of other authors (Smith, 2003 and WHO, 1981).

Bacteria	Raw sewage		Secondar	y effluent	Manure		
	PS	ТС	PS	ТС	PS	TC	
Total colony count	30	8.2x10 ¹⁰	30	6.7x10 ⁶	30	5.3x10 ⁶	
Faecal coliforme	30	9.4x10 ⁸	30	5.2×10^3	30	4.2×10^{2}	
Faecal streptococcus	30	7.8x10 ⁴	30	6.5×10^3	26	3.2×10^2	
Salmonella spp	9	2.1×10^2	3	1.3×10^{1}	0	0	
Shigella spp	2	1.1x10 ¹	0	0	0	0	
Streptococcus pneumonia	11	6.9x10 ²	8	4.2×10^2	10	5.2x10 ¹	
Staphylococcus aureus	9	8.7x10 ³	6	6.3x10 ³	8	9x10 ²	
Pseudomonas aeruginosa	11	3.4x10 ⁴	7	3.2×10^2	10	2.1×10^2	
Bacillus cereus	10	2.3×10^2	4	7.3x10 ¹	8	5.1x10 ¹	
Escherechia. Coli	30	7.6x10 ⁶	30	$2.8.x10^{3}$	30	1.2×10^2	

Table (1) : Total counts (TC) and number of positive samples (PS) for Bacteria isolated from 30 samples of each raw sewage (colony/ml), secondary effluent (colony/ml) and manure (colony/g).

Fungi recovered from raw sewage:

Sixty five species belonging to twenty three genera were isolated from 30 samples of raw sewage on Sabouraoud's dextrose agar without (23 genera and 60 species) or with (21 genera and 39 species) cycloheximide at 28 °C (Table 1). The total number of fungal propagules encountered on both media were 3309.3 and 1404.44 colony per ml.

The most prevalent genera, species on those media were Aspergillus (15), Penicillium (9), Fusarium (5), Cladosporium, (4) Alternaria(4), Cochliobolus (3) Trichoderma(3), Scopulariopsis (2) Mucor (2), Geotrichium (1) and Gibberella (1). They recovered from 66.6 -100% of the samples, constituting 2.17-28.75 % of total fungi respectively. Of the above genera the most frequently encountered species were: Aspergillus flavus, A.fumigatus, A.niger, Acremonium stictum, Aspergillus terreus, A. versicolor, Cladosporium cladosporioides, C. herbarum, C. oxysporum, Gibberella fujikuroi, Cohliobolulus hawaiiensis, Fusarium solani, F. oxysporum, Penicillium chrysogenum, Geotrichum candidum and Scopulariopsis brevecaulis. The above fungi were recovered previously, but with different numbers and frequencies, from sewage and sludge or soil receiving City sewage effluent (Abdel-Hafez and EL-Sharouny, 1987; AbdelMallek *et al.*, 1988; Gray, 1982; Niebl, *et al.*, 1982 and Ismail and Abel- Sater 1994).

On Sabouraoud's dextrose agar with cycloheximide, thirty nine species belonging to sixteen genera were isolated from 30 samples of raw sewage (Table 1).

The total number of fungal propagules encountered on this media was lower compared to those encountered on Sabouraoud's dextrose agar without cycloheximide (Table 2). The prevalent genera on this media were Aspergillus (9 species), Penicillium (6), Cladosporium, (3), Fusarium (2), Alternaria (2), Cochliobolus (2) Chrysosporium (3), Gibberella (1) and Geotrichum (1). They were isolated from 50-100 of the tested samples. The most common species were: Aspergillus flavus, A. fumigatus, A. niger, Gibberella fujikuroi. Geotrichum and Cohliobolules hawaiiensis were recovered in high frequency of occurrence and constituted 4.60, 3.36, 3.34, 3.35, 3.18 and 2.63 % of total fungi respectively. A, vercicolor, A. ochraceus, Alternaria alternata, A.phragmospora, Acremonium Cladosporium strictum, cladosporioides, C. oxysporum, Fusarium solani, F. pallidoroseum, F. semitectum, Penicillium chrysogenum, P. funiculosum, P. spinolosum, Cochliobolus lunatus, Trichoderma hamatum, T. longibarchiatum, Scopulariopsis brevecaulis and Scopulariopsis brumptii were recovered from

26.6-43.3% of the samples and constituted 1.43-2.93% of total fungi respectively.

Mucor, Rhizopus and *Aspergillus tamarrii* were not rcovered on this medium, but they

encountered on On Sabouraoud's dextrose agar without cycloheximide in different frequencies. The remaining genera and species were isolated in low or rare frequency of occurrence.

 Table (2): Total counts (TC), number of isolated cases of (NCI), occurrence remarks (OR) and percentage of frequencies (F%) of fungal genera and species recorded from raw sewage on Sabouraud's agar, with and without cycloheximide at 28 °C.

		cycloheximide at 28 °C.	า			
	Sabouraud's	Sabouraud's agar				
	agar	with cycloheximide				
Genera & Species	Without					
Genera d'optetes	cycloheximide			-	-	
	тс	NCI&OR	F%	тс	NCI& OR	F%
Absidia corymbifera (Cohn) Sacc.& Trotter	62.7	9M	30	0	0	0
Acremonium Strictum W.Games	91.4	14M	46.6	52.1	10M	33.
Alternaria	201.2	30H	100	61.1	11M	36.
A. alternata (Fries) keissler	57.7	15H	50	32.3	8M	26.
A. chlamydospora Mouchacca	37.7	6L	20	0	0	0
A. Phragmospora Van Emden	61.4	13M	43.3	Ő	Ő	Õ
A. tenuissima (Kunze) Wiltshire	44.4	9M	30	28.8	6L	20
Aspergillus	927.57	30H	100	413.	30H	100
Asperguus	21.51	5011	100	6	5011	100
A. aureolatus Munt., Cvet. &	37.9	6L	20	0	0	0
Bata	20.2	OM	200	•	0	
A. clavatus Desm.	28.3	8M	26.6	0	0	0
A. flavus Link	145.1	27H	90	96.4	19H	63.
A. fumigatus Freserius	129.6	25H	83.3	70.4	15H	50
A. glaucus Link	37.7	6L	20	0	0	0
A. melleus Yukawa	57.0	12M	40	0	0	0
A. niger Van Tieghem	124.8	20H	66.6	69.9	16H	53.
A. ochraceus Welhelm	62.7	9M	30	58.6	8M	26.
A. sydowii (Bin. & Sart.) Thom&	36.1	7L	23.3	31.1	6L	20
Church						
A. tamarii Kita	37.7	6L	20	0	0	0
A. carncus (v.Tiegh) Blochwis	32.7	7L	23.3	0	0	0
A. resttrictus Smith	45.5	8M	26.6	13.3	2R	6.6
A. terreus Thom	74.3	16H	53.3	56.6	10M	33.
A. ustus (Bain.) Thom & Church	61.4	10M	33.3	17.3	4L	13.
A. versicolor (Vuill.) Tiraboschi	72.2	15H	50	56.6	11M	36.
Blastomyces dermatitides	57.7	9M	30	36.6	7L	23.
Gilchrist et Stokes						
Chrysosporium	35.2	6L	46.6	86.5	16H	56.
<i>C. tropicum</i> Carmichael	35.2	6L	46.6	36.6	7L	23.
C. indicum (Randhawa &	0	0	0	31.1	6L	20
Sandhu) Gary			-			
<i>C. parvum</i> (Emmonsia &	0	0	0	28.3	4 L	26.
Ashburn) Carmichael	-		-			
Cladosporium	239.6	29Н	96.6	144.	22H	73.
*				6		
<i>C. cladosporioides</i> (Fries)de vries	74.3	17H	56	56.6	13M	43.
C. herbarum (Pers.) Link ex	72.2	15H	50	13.3	3R	10
Gray						

C. axysporium Ber. & Curt.	70.4	16H	53.3	61.4	13M	43.3
C. sphaerospermum Penzig	13.3	3R	10	0	0	0
Cylindrocarpon Congoense. Meyer	31.3	7L	23.3	35.5	12M	40
Cochliobolus	155.9	27H	90	66.3	18H	60
C. hawaiiensis Alcorn	68.4	15H	50	0	0	0
C. lunatus Nelson & Haasis	56.0	10M	33.3	43.3	11M	36.6
C. spicifer Nelson	31.5	9M	30.0	23.0	12M	40
Cunninghmella elagans Lendner	56.6	11M	36.6	0	0	0
Fusarium	292.5	30H	100	62.9	15H	50
F. solani (Mart) Sacc	64.0	20H	66.6	36.3	11M	36.6
F. oxysporum Schlecht	64.0	15H	50	26.6	5L	16.6
F. pallidoroseum (Cooke) Sacc.	52.1	12M	40	0	0	0
F. semitectum Berk & Rav.	59.1	14M	46.6	0	0	0
F. dimerum Penzig	53.3	13M	43.3	0	0	0

Table (2) : Continued

	Raw sewage							
			ud's agar	S	Sabouraud's agar with			
Genera & Species	V	Vithout cy	cloheximide		cycloheximide			
	TC	NCL	&OR F%	6 TC	NCI	kOR F%	,	
Gibberella fujikuroi (Sawada) Ito		79.8	22H	73.3	70.2	16H	53.3	
Geotrichum candidum Link		69.9	16H	53.3	66.6	15H	50	
Graphium sp.		51.5	9M	30	0	0	0	
Histoplasma capculatum Darling		0	0	0	16.6	4L	13.3	
Microsporum		36.6	8M	26.6	63.2	11M	36.6	
M. canis Bodin		0	0	0	13.3	3R	10	
M. gypseum (Bodin) Guiart et Grigorakis		36.6	8M	26.6	33.3	7L	23.3	
M. manginii (Loubiere) Curzi		0	0	0	16.6	4 L	13.3	
Mucor		107.6	20H	66.6	0	0	0	
M. circinelloides Van Tieghem		64.0	13M	43.3	0	0	0	
M. rasemosus Fresenius		43.6	8M	26.6	0	0	0	
Penicillium		415.3	30H	100	83.44	20H	66.6	
P. chrysogenum Thom		69.5	23H	76.6	53.3	12M	40	
P. raistrickii G. Smith		47.7	9M	30.0	0	0	0	
P. brevicompactum Dierckx		53.3	13M	43.3	33.3	6L	20	
P. citrinum Thom		32.3	7L	23.3	24.0	4L	13.3	
P. funiculosum Thom		64.0	14M	46.6	36.3	11M	36.0	
P. verruculosum Peyronel		20.0	4 L	13.3	13.3	2R	6.6	
P. expansum Link		20.0	6L	20	0	0	0	
P. spinolosum Thom		59.1	10M	33.3	0	0	0	
P. rubrum Stoll		36.1	8M	26.6	30	4L	13.3	
Pestalotia pezizoides de Notaris		36.1	8M	26.6	0	0	0	
Rhizopus stolonifer(Ehrenb)Lindt		37.7	5L	16.6	0	0	0	
Scopulariopsis		112.1	21H	83.3	56.1	14M	46.4	
S. bervicaulis (Sacc.) Bain.		71.1	15H	50	56.1	14M	46.0	
S. brumptii Salvanet-Duval		41.0	7L	23.3	0	0	0	
Sordaria fumicola (Roberge) Cesati & de No	taris	51.1	9M	30.0	0	0	0	
Sterile mycelia (white, yellow, dark)		32.3	7L	23.3	25.3	5L	16.0	
Trichoderma		151.0	22H	73.3	54.8	9M	30	
T. hamatum (Bon.) Bain.		47.5	12M	40.0	0	0	0	
T. viride Persoon		35.1	8M	26.6	0	0	0	
T.longibarchiatumi Rifai	68.4	14M	46.6	54.8	9M		30	
Yeasts	126.3	30H	100	83.3	18H		50	
Gross total count		3309.	3		14	104.44		
Number of genera = 23		23				21		
Number of species =65		60				39		

Occurrence remarks (OR), H= high occurrence, from 15-30 cases; M= moderate occurrence, from 8-14 cases; L= low occurrence, from 4-7 cases; R= rare occurrence, from1-3 cases (out of 30 cases).

Fungi recovered from secondary effluent :

Twenty five species belonging to twelve genera were isolated from 30 samples of secondary effluent on Sabouraoud's dextrose agar with /or without cycloheximide and at 28 °C (Table 3).

The total numbers of fungal propagules encountered in all samples on both media were 418.6 and 773.3 colony per ml. The prevalent genera on Sabouraoud's dextrose agar without cycloheximide were Aspergillus (10 species), Fusarium (3), Cladosporium (2) and Penicillium (3) and they were isolated from 100, 66.6, 56.6 and 50% of the samples, constituting 37.5, 12.19, 11.04 and 10.7% of total fungi respectively. The most common species were Aspergillus flavus, A. fumigatus, A. niger, A. terreus, Cladosporium cladosporioides, Gibberella fujikuroi, Fusarium solani, **F**. oxysporum, Penicillium chrysogenum, and Scopulariopsis brevecaulis. They were recovered from 40-26.6 % of the samples and constituted 6.89- 26.6 % of total fungi. These species were previously recovered but with different incidences from soil receiving city sewage effluent in Egypt (Abdel-Hafez and EL-Sharouny, 1987). The remaining species were collected in low and rare frequency of occurrence. Chrysosporium was not encountered on this media.

The most dominant fungus on Sabouraoud's dextrose agar containing cycloheximide was *Aspergillus* (10 species). It was isolated from 100% of the tested samples, constituted 38.17 of total fungi. The most dominant species was *A. flavus*. It was encountered in moderate frequency of occurrence. The remaining species were isolated in low and rare frequency of

occurrence. *Cladosporium* (2 species), *Penicillium* (3), *Fusarium* (3) and *Gibbbrella* (1). They were isolated in moderate frequency of occurrence and encountered from 43.3, 43.3, 40, and 26.6 % of the total samples, representing 14.2, 13.6, 13.9 and 7.16 of the total fungi respectively.

The remaining genera and species were collected in low or rare frequency of occurrence.

Fungi recovered from dewatered sludge (manure):

Sixty species belonging to 25 genera were isolated from 30 samples dewatered sludge (manure) of secondary effluent on Sabouraoud's dextrose agar with and without cycloheximide at 28 °C (Table 4).

The prevalent genera on cycloheximide free medium were Aspergillus (11 species). Penicillium (7), Fusarium (4), Alternaria (3), Cladosporium (3), Trichoderma(3), Cochliobolus (3), Scopulariopsis (3) Mucor (2) and Gibberella (1). They were isolated in high frequency of occurrence, constituting 3.03-28.87 % of total fungi respectively. The most common species were: Aspergillus flavus, A.fumigatus, A.niger, Aspergillus Terreus, Gibberella fujikuroi, Fusarium solani and Penicillium funiculosum. They were recovered from 50-60% of the samples. On the other hand Aspergillus ochraceus, A.versicolor, C. cladosporioides, C. oxysporum, Alternaria alternata, A. tenuissima, Chaetamium globosum, Cohliobolus hawaiiencsis C.lunatus, C. spicifer, Geotrichum candidum, Fusarium oxysporum, Mucor circinoeloides, M. racemosus, Penicillium chrysogenum, Penicillium *brevicompactum* **P**. citrinum, Rhizopus oryzae, Trichoderma viride, and Scopulariopsis brevecaulis were collected in

moderate frequency of occurrence. They were encountered from 26.6- 46.6% of the total tested samples, constituting 1.42-3.04 % of the total count of fungi. The remaining species were collected in low or rare frequency of occurrence.

The prevalent genera recovered on Sabouraoud's dextrose agar with cycloheximide were: Aspergillus (8 species), Penicillium (4), Cladosporium, (2), Fusarium (2), Alternaria(2) and Cochliobolus (2). They were isolated from 50-100 of the tested samples accounting to 30.6-6.99. % of total fungi respectively. The most common species was: *Aspergillus flavus*. It was the only species recovered in high frequency of occurrence, constituting 5.26 % of the total fungi.

Aspergillus fumigatus, A. niger, A. terreus, A. ochraceus, Alternaria alternata, Cladospoium cladosporioides, Fusarium solani, Penicillium chrysogenum, P. funiculosum, Cochliobolus lunatus, Scopulariopsis brevecaulis and Gibberella Fujikuroi were recovered in moderate frequency of occurrence (Table 4).

Table (3) : Total counts (TC), number of cases of isolation (NCI), occurrence remarks (OR) and percentage of
frequencies (F%) of fungal genera and species recorded from secondary effluent on Sabouraud's agar,
with and without cyclohexamide at 28 °C.

		bouraud's aga		Sabouraud's agar with			
Genera & Species		out cyclohexan			yclohexamide		
Alternaria		NCI&OR	F%	ТС	NCI&OR	F%	
Alternaria	42.6	6L	20				
A. alternata (Fries) keissler	29.3	5L	16.6	13.3	3R	10	
A. tenuissima (Kunze) Wiltshire	13.3	2R	6.6	13.3	1R	3.3	
Aspergillus	290.1	30H	100	146.5	21H	50	
A. flavus Link	53.3	12M	40	31.6	8M	26.6	
A. fumigatus Freserius	50.0	12M	40	30.4	7L	23.3	
A. niger Van Tieghem	36.0	10M	33.3	25.0	7L	23.3	
A. ochraceus Welhelm	34.2	7L	23.3	17.7	3R	10	
A. tamarii Kita	20.0	2R	6.6	0	0	0	
A. terreus Thom	43.6	11M	36.6	28.5	7L	23.3	
A. ustus (Bain.) Thom & Church	23.3	4L	13.3	13.3	2R	6.6	
A. versicolor(Vuill.) Tiraboschi	30.0	4L	13.3	0	0	0	
Chrysosporium. Tropicum Carmichael	0	0	0	22.2	3R	10	
Cladosporium	85.4	17H	56.6	59.5	8M	26.6	
C. cladosporioides (Fries)de vries	48.8	12M	40	26.6	5L	16.6	
C. herbarum (Pers.) Link ex Gray	34.6	5L	16.6	22.2	3R	10	
Fusarium	94.3	20H	66.6	45.2	12M	40	
F. dimerum Penzig	22.2	3R	10	0	0	0	
F. oxysporum Schlecht	26.6	8M	26.6	18.6	5L	16.6	
F. solani (Mart) Sacc.	45.5	12M	40	26.6	9M	30	
Gibberella fujikuroi (Sawada) Ito	43.0	13M	43.3	30.0	8M	26.6	
Geotrichum candidum Link	24.7	7L	23.3	21.3	5L	16.6	
Penicillium	82.8	15H	50	57.0	13M	43.3	
P. chrysogenum Thom	30.0	8M	26.6	20.9	7L	23.3	
P. citrinum Thom	18.6	5L	16.6	13.3	3R	10	
P. funiculosum Thom	34.2	7L	23.3	22.8	7L	23.3	
Rhizopus stolinefer (Ehrenb) Lindt	26.6	6L	20	0	0	0	

Scopulariopsis	34.3	9M	30	16.0	5L	16.6	
S. bervicaulis (Sacc.) Bain.	18.3	8M	26.6	16.0	5L	16.6	
S. brumptii Salvanet-Duval	16.0	5L	16.6	0	0	0	
Trichoderma viride Persoon	13.3	7L	23.3	0	0	0	
Yeasts	36.2	14M	46.6	24.0	10M	33.3	
Gross total count		733.3		436.8			
Number of genera = 12		11			10		
Number of species = 25		24	23				

Occurrence remarks (OR), H= high occurrence, from 15-30 cases; M= moderate occurrence, from 8-14 cases; L= low occurrence, from 4-7 cases; R= rare occurrence, from1-3 cases (out of 30 cases).

					Sabouraoud agar			
Genera &Species			out cyclohex	1		h cyclohexan		
		TC	NCI&OR	F%	TC	NCI&OR	F%	
Alternaria		151.4	20H	66.6	72	18H	60.0	
A. alternata (Fries) keissler		56.0	10M	33.3	41.6	8M	26.6	
A. chlamydospora Mouchacca		49.5	7L	23.3	0	0	0	
A. tenuissima (Kunze) Wiltshire		45.9	9M	30	30.4	7L	23.3	
Aspergillus		530.4	30H	100	315.7	30H	100	
A. flavus Link		85.1	18H	60	54.2	15H	50	
A. fumigatus Freserius		80.7	18H	60	49.5	14M	46.6	
A. glaucus Stoll		20.0	4L	13.3	0	0	0	
A. niger Van Tieghem		74.1	16H	53.3	51.1	12M	40	
A. ochraceus Welhelm		55.3	13M	43.3	38.0	7L	23.3	
A .prasiticus Speare		23.3	4 L	13.3	13.3	2R	6.6	
A. sydowii (Bin. & Sart.) Thom & Chur	·ch	29.3	5L	16.6	26.6	4L	13.3	
A. tamari Kita		24.4	6L	20	0	0	0	
A. terreus Thom		69.3	15H	50	45.3	10M	33.3	
A. ustus (Bain.) Thom & Church		32.3	7L	23.3	0	0	0	
A.versicolor(Vuill.)Tirabosci		36.6	8M	26.6	37.7	6L	20	
Chaetomium globosum Kunze		35.0	8M	26.6	33.3	6L	20	
Chrysosporium		13.3	3R	10	37.3	6L	20	
C. tropicum Carmichael		13.3	3R	10	24.0	5L	16.6	
C. parvum (Emmonsia & Ashburn) Car	rmichael	0	0	0	13.3	1R	3.3	
Cladosporium		133.4	26H	86.6	80.6	18H	60	
C. cladosporioides (Fries)de vries		50.7	14M	46.6	38.7	11M	36.6	
C. herbarum (Pers.) Link ex Gray		36.1	7L	23.3	0	0	0	
C. oxysporium Ber. & Curt.		46.6	10M	33.3	41.9	7L	23.3	
Cochliobolus		101.1	27H	90	66.0	15H	50	
C. hawaiiensis Alcorn		32.5	9M	30	0	0	0	
C. lunatus Nelson & Haasis		36.6	12M	40	41.3	10M	33.3	
C. spicifer Nelson		32.0	10M	33.3	24.7	7L	23.3	
Doratomyces stimonitis Smith		32.5	7L	23.3	0	0	0	
Fusarium		181.7	19H	63.3	73.7	18H	60	
F. dimerum Penzig		31.1	3R	10	0	0	0	
F. oxysporum Schlecht		46.6	10M	33.3	30.4	7L	23.3	
F. semitectum Berk. & Rav.		28.8	6L	20	0	0	0	
F. solani (Mart) Sacc.		58.6	15H	50	43.3	12M	40	
Gibberella fujikuroi (Sawada) Ito		55.8	16H	53.3	43.8	13M	43.3	
Geotrichum candidum Link		43.3	8M	26.6	13.3	7L	23.3	
Graphium sp	57.7	13M	43.3	0	0	0		
Histoplasma capculatum Darling	0	0	0	13.3	1R	3.3		
Macrophomina phaseolina (Tassi) Goidanich	24.7	7L	23.3	0	0	0		
Microsporum	16.0	5L	16.6	28.8	7L	23.3		

M. cansi Bodin	0	0	0	13.3	3R	10
M. gypseum Bodin	16.0	5L	16.6	15.5	6L	20
Mucor	66.9	16H	53.3	0	0	0
M. cercinoloides Van Tieghem	36.9	14M	46.6	0	0	0
M. rasemosus Fresenius	30.0	8M	26.6	0	0	0
Penicillium	264.6	30H	100	121	22H	66.6
P. chrysogenum Thom	42.0	13M	43.3	32.5	8M	20
P. roistrickii G. Smith	22.2	3R	10	0	0	0
P albidum Sopp	26.6	4 L	13.3	0	0	0
P. brevicompactum Dierckx	36.0	10M	33.3	0	0	0
P. citrinum Thom	34.6	10M	33.3	34.2	7L	13.3
P. funiculosum Thom	54.6	15H	50	41.0	13M	23.3
P. rugulosum Thom	32.0	5L	16.6	0	0	0
P. rubrum Stoll	16.6	4 L	13.3	13.3	3R	10
	Table (4)	: Continued				

Table (4) : Continu

	Genera &Species	Sat	oouraoud's	agar		Sabouraoud agar with cyclohexamide		
		ТС	NCI&OR	F%	TC	NCI&OR	F%	
Phialopho	ra repens (Davidson) Conant	13.3	1R	3.3	13.3	1R	3.3	
Rhizopus		46.4	12M	40	0	0	0	
R. nigrio	cans (Ehrenb) Lindt	29.3	10M	33.3	0	0	0	
R. oryza	e Went & Prinsen	17.1	7L	23.3	0	0	0	
Scopulario	psis	95.7	18H	60	32.0	10M	33.3	
S. bervic	caulis (Sacc.) Bain.	35.8	13M	43.3	32.0	10M	33.3	
S. brum	<i>ptii</i> Salvanet – Duval	28.8	6L	20	0	0	0	
S. candi	da (Gueguen) Vuillemin	31.1	6L	20	0	0	0	
Sordaria fi	umicola (Roberge) Cesati & de Notaris	20.9	5L	16.6	0	0	0	
Setosphaer	ria rostrata Leonard	29.3	7L	23.3	0	0	0	
Trichoder	na	104.3	16H	53.3	22.2	3R	10	
T. hama	tum (Bon.) Bain.	33.3	6L	20	0	0	0	
T. viride	Persoon	47.7	12M	40	0	0	0	
T.longib	archiatum Rifai	23.3	4 L	13.3	22.2	3R	10	
Trichothic	ium roseum (Pers.) Link ex gray	34.2	7L	23.3	26.6	4L	13.3	
Verticilliur	n spp	28.5	7L	23.3	0	0	0	
Yeasts		54.1	16H	53.3	50.4	14M	46.6	
Gross tota	l count		2110.92		988.1			
Number of	f genera = 25		24			16		
Number of	f species =60		55			31		

Occurrence remarks (OR), H= high occurrence, from 15-30 cases; M= moderate occurrence, from 8-14 cases; L= low occurrence, from 4-7 cases; R= rare occurrence, from1-3 cases (out of 30 cases).

The remaining genera and species were isolated in low or rare frequency of occurrence.

Fungi recovered from the present study have been found in large numbers in sewage (Gray, 1982; Niebl, et al., 1982; and Ismail and Abel- Sater 1994; Diener., et al., 1976; Elland 1981; Larry and Wanger, 1982; Abdel-Hafez and EL-Sharouny, 1987; and Abdel-Mallek et al., 1988).

Also numerous fungi recovered in our study are well known as mycotoxin producing fungi

(Tseng, et al., 1995; Aleksandrowies, and Smyk, 1973; Enomoto and Saito, 1972; Pitt, 1994; Rippon, 1982; Sutic, et al., 1979 and Scudamore 1993).

A certain number of the fungus species recovered in this study are pathogenic (Austwick, 1983; Wadhwani and Srivastava 1985 and Pitt 1994). They are potential facultative causative agents of different mycotic infection (Velzer and Diaz, 1985; Bunse and Merk, 1992, Sutton, et al., 1998, Hoog, et al., 2000).

CONCLUSION:

The workers in the sewage treatment plant most have a health risk during the treatment processes. Health risk are associated with the pathogens, which may spread through being directly, or indirectly ingested into the human body. Pathogens and toxic compounds may be disseminated through Sludge and Sewage, as well as through aerosols (Hickey and Reist, 1975; Bausum *et al.*, 1978 and Bausum *et al.*, 1982). The windy weather raises the question of potential human health hazard passed by pathogen-containing aerosols, in the sewage treatment plant and human communities in the surrounding areas.

The same problem regarding the health of agricultural workers occurs when spray irrigation of sewage effluent is used. Aerosol droplets containing pathogens have been reported to travel up to 1-2 Km (Adams and Spendlove, 1970). Pathogens are more effective when inhaled than when ingested (Melnick, *et al.*, 1978).

Two sewage workers in the Ibb sewage treatment plant suffer from an allergic skin disease (Al-Zubeiry and Al-Shargaby, 1997). But in general sewage workers suffer from an increased incidence of infection or other diseases (Pahren, and Jakubowski,1980; and SWaWWA, 1978). It is important for these workers to have suitable protective clothing, shoes and gloves. Ventilation should be satisfactory, and treatment processed should be automated to the fullest extent possible.

Perhaps the most important single factor is to make sure that sewage workers know how to avoid infection and that they are aware of and use protective measures in their daily work. However, the one of the most important questions, it is the position of sewage treatment plant. Sewage treatment plant must be far away from cities and human communities and must be built in the suitable place from a public health point of view.

REFERENCES:

- Abdeerahman Walid. A. and Shahlam A. M. (1991): Reuse of wastewater effluent for irrigation in severely arid regions" Alternative schemes- a case study". Water Resources Development. (4), 235-246.
- Abdel-Hafez, A.I.I. and El-Sharouny, H.M.M. (1987): Seasonal fluctuations of fungi: in Egyptian soil receiving city sewage effluents. Cryptogamie. M. Mycologie 8: 235-249.
- Abdel-Mallek, A.Y, Moharram, A.M. and Bagy, M. M. K.(1988): Effect of soil treatment with sewage and sludge on fungal populations. J. Basic Microbiol. 28. 9/10, 565-570.
- APHA-American Public Health Association (1989): Standard methods for the examination for water and wastewater. 20th ed., AWWA, WPCF, Washington, D.C., USA.
- Adams, A.P. and J.C. Spendlove (1970): Coliform aerosols emitted by sewage treatment plants, Science (169), 1218-1220.
- Aleksandrowies, J., and B. Smyk (1973): The association of neoplastic diseases and Mycotoxins in the environment. Texas. Rep Biol, Med. 31.715. (Torry and Marth, 19770).
- Austwick, P.k.C. (1983): Fungi as a cause of human and animal diseases. In Plant Pathologists pocket book (2nd ed. Johnson

J. & Boot C. Commonwealth Mycological Institute, Kew, Surrey, England.

- Bausum, H. T., Brockett, B. E., Schumacher, P.
 W., Schaub, S. A., McKim, H. L. and Bates. (1978): Microbiological aerosols from a field source during Sprinker irrigation with wastewater, [273-280] In International symposium on land treatment of Wastewater, Vol. 2. U.S. Army Corps of Engineers. Hanover, N.H.
- Bausum, H.T., Schaub, S. A., Kenyon, K. F. and Small, M. J. (1982): Comparison of Coliphage and Bacterial Aerosols Spray Irrigation Site. Applied and Environ. Microbiology, Vol. 43, No. 1. PP. 28-38
- Bouwer H. (1982): wastewater reuse in arid areas, PP. 137-180 in water reuse, Ann Arbor Science Puplishers, Ann Arbor.
- Bunse, T. and Merk H. (1992): Mycological aspects of inhalative mould allergies. Mycoses; 35: 61- 66.
- Diener. U. Morgan-Jones, G. Hagles, W.M. and Davis, D.(1976): Myco-flora of activated sewage sludge. Mycopathologia 58:115-116.
- Domsch, K. W., Gams, W. & Anderson, T. H. (1980): Compendium of soil fungi. Academic Press, London.
- Doyle, Michael P. *et al.*1997. Food Microbiology fundamentals and frontiers. ASM Press, Washington D.C. pp. 137-38.
- Dunlop, S. G and W. L. Wang.(1961): Studies on the use of sewage effluent for irrigation of ttruckcrops. J. Milk Food Technol. 24:44-47.
- Dudley, D.J., Guentzel, M. N., Ibarra, M. J., Moore, B.E and Sagik, B.P. (1980): Enumeration of Potentially pathogenic bacteria from sewage sludges. Appl. Environ. Microbiol. 39: 118-126.

- Elland, F. (1981): The effects of application of sewage on micro-organisms in soil. Danish J. Plant Soil Sci. 1534:39-46.
- Ellis, M.B. (1976): More Dematiaceous Hyphomycetes. Commnwealth Mycological Institute, Kew, Surrey, UK.
- Enomoto. M and Saito, M.(1972) : Carcinogens produced by fungi Ann. Rev. Microbiol. 26 : 279-312.
- El-Zaemey, A.K. (1992): Wastewater reuse practices in Yemen. In Prroceeding of the National Seminar on Wastewater Reuse. May 9-11, 1992. PP 35-43.
- Emeral, G. and and Kayser, R. (1984): German experience in ruse of wastewater for agriculture purpose, in Water Reuse. Institute for Scientific Cooperation, Tubingen, Germany.
- Epstein L., Kimberly, D. and Safir, G(1982):Plant diseases in an old field ecosystem irrigated with municipal wastewater. J. Environ. Qual. 11: 65-69.
- FAO (1992): Wastewater treatment and use in Agriculture. Rome, 1992
- Feachem, R. G., Bradly D. G., Garelic H and Mara, D. D.(1983): Sanitation and dis ease: Health Aspect of Excreta and Wastewater Management. John Wiley, Chichester.
- Gray, N.F. (1982): A key to the major slimforming organisms of sewage fungus. J. Life Sci. R Dublin Sco., 4, 97-112.
- Halderson, J.L. & Zons, D.R. (1978): Use of Municipal Sewage in Reclamation of Soils, Am.Soc. Agron., PP. 355-377.
- Hickey, J.L.S., and P. C. Reist (1975): Health significance of air-borne microorganisms from Wastewater treatment processes. J. Water Pollut. Control Fed. 47:2741-2757.
- Hoog, G. S., Cuarro, J., Gene, J. and Figueras. (2000): Attlas of Clinical Fungi. Send

edition. Centraalbureau voor Shimmelcultures/Rovira i Virgili.

- Ismail. M. A. and Abdel-Sater, M. A. (1994): Mycoflora inhabiting water closet environments. Mycoses 37:53-57.
- Kirk, John H. Pathogens in Manure. http://www.vetmed.ucdavis.edu/vetext/IN F-DA/Pathog-manure.pdf>Accessed 2003 Nov 7.
- Kowal, N.E., Pahren, H. R. and Akin, E. W. (1980): Microbiological health effects associated with the use of municipal Wastewater for irrigation, p. 1-50. In International Conference on Cooperative Research Need for the Renovation and reuse of Municipal Wastewater for Agriculture. Secretaria de Agricltura y Recursos Hidraulicos, Mexico, D. F.
- Larry M.Z. and Wanger G.H. (1982): Bacterial growth and fungal genera distribution in soil amended with sewage sludge containing cadmium, chromium and copper. Soil Sci. 134: 364-370.
- Larkin, P.E., Tierney, J.T., Lovett, J.,Van Donsel, D. and Francis. (1978): Land application of sewage wastes: potential for contamination of foodstuffs and agricultural soils by viruses bacterial pathogens and parasites, P. 215-223. In H.L McKim(ed.), State of knowledge in land treatment of wastewater. U. S. Army Corps of Enginees, CRRL, Hanover, N. H.
- Madancy, R. S(1981): The role of federal and state agencies to stimulate, coordinate and fund research related to the renovation and reuse of municipal wastewater in the United States, In municipal Wastewater in Agriculture, Academic Press, New York.
- Mara D.D and Cairneross S(1989): Guidelines of the safe use of wastewater and excreta

in agriculture and aquaculture – measure for public health protection. World Health organization, Genevy

- Melnick, J. L, Gerba C. P. and Wallis C. (1978): Virus in Water, Bulletin of the World Health Organization, Vol. 56, N 4, pp 499-508.
- Moss, E. S and McQuown, A. L. (1969): Atlas of medical mycology, 3rd. ed. Baltimore, Williams and Wilkins Co.
- Moubasher, A. H. (1993): Soil Fungi in Qatar and Other Arab Countries. The Scientific and Applied Research Center, Univ. of Qatar.
- Niebl, A., Lacy, A. M. and Aguero, F. (1982): Mycological analysis of facultative stabilization deposit of sewage of Almlyoa de Rio State of Mexico. Rev. Latnoam Microbiol., 24, 59-63.
- Neis, U. (1984): 'Wastewater Reuse', in Selected Reports on Water Reuse in Urban and Rural Aereas, University of Karlsruhe and Alfred Bittner, Tubing, Germany.
- Nell, J. H., Engelbrecht, J. F. P., Smith, L. S &Nupeen, E. M(1981): Wat. Sci. Tech. 13, 153.
- Pahren, H., and Jakubowski W. (1980) (ed): Wastewater aerosols and disease. U.S. Environment Protection Agency, Cincinnati, Ohio.
- Pennsylvania Environmental Network. 2002 Apr 4. National Sludge Alliance Fact Sheet #129. http://www.penweb.org/ issues/sludge/129.htm>Accessed 2003 Nov 11.
- Pitt J.I. (1994): The current role of Aspergillus and Penicillium in human and animal health. J. of Medical and Veterinary Mycology 32.1,17-32.
- Raper. K. B. and Fennell. D. (1965): The Genus Aspergillus. The Williams & Wilkins Company, Baltimore. USA.

- Raper, K. B. and Thom, C. (1949): A manual of Penicillium. p.875. Williams, Baltimore, USA.
- Rippon, J W. (1982): Medical mycology. the pathogenic fungi and pathogenic actinomyctes. W. B. saunderes Co, Philadelphia.
- Rosas, I. Baez, A. and Coutino, M. (1984):Bacteriological Quality of Crops Irrigation with Wastewater in the Xochimilco plots, Mexico City, Mexico. Applid and Environmental Microbiology, May 1984, P. 1074-1079.
- Scudamore, K. A., Clarke, J.H. and Hetmanski. (1993). Isolation of Penicillum strains producing ochratoxin A, citrinin, xathomegnin, viomellein and vioxanthin from stored cereal grains. Letters in Applied Microbiology. 17. 82-87.
- Shuval H. I. (1991): The development of health effects guideline for wastewater reclamation. Wat. Sci. Tech. Vol. 24, pp.149-155.
- Shuval H. I., Adin A., Fattal B., Rawitz and Yekutiel P. (1986): Wastewater irrigation in Developing countries: Health effects and technical solutions. Technical Paper No. 51. World bank, Washington DC.
- Simpson, J. R. (1982): Water pollution control in developing areas: proplems and needs. Water Science and Technology 14, 1353-1373.
- Smith, Jr. J.E. (2003): Fate of Pathogens during the Sewage Sludge Treatment. <http://www.precisionlabsinc.com/Sludge /Smith-EPA.htm>. Accessed 2003 Nov1.
- Stone, R. J.; Ekwue, E.I and Clarke, R.O. Engineering properties of sewage sludge in Trinidad. Journal of Agricultural Engineering Research, 1998, vol. 70, p. 221-230.

- Strachan, S.D., Nelson, D. W & Sommers, L (1983): Envir. Qual. 12, 69.
- Sutic, M., Mitic, S., and SvilA.R. N. (1979). Aflatoxin in milk and milk products Mijekarstov. 29 (4) : 74- 80 Dairy Sci. Abst. 42 (2) ; 801. (1980).
- UN Department of Technical Coorporation for Development (1985): The use of nonconvenitional water recources in developening countries. Natural Water Resources Series No. 14. United Nation DTCD, New York
- Sutton, D., Fothergill, A. and Rinaldi, M. (1998): Guide to Clinically Significant fungi. Williams and Wiknis. Baltimore.
- Swedish Water and Wastewater Works Association (SWaWWA). (1978): Health risk in Sewage System Swedish Water and Wastewater Work, Association. Stockholm.
- Takatori, K.,Ohta,T., Lee, H., Akiyama, K. and Shida, T.(1994): Fungi related to allergies. J. Medical Mycology 35: 409-414.
- Tchobanogeuos, G. (1979): Wastewater Engineering: Treatment Disposal Ruse 2nd ed. PP. 56-141 and 829-864. Boston : McGraw Hill.
- Tseng, T. C., Tu, J. C., Tzean S. S. (1995). Mycoflora and mycotoxins in dry bean (Phaseolus vulgaris) produced in Taiwan and in Ontario, Canada. Botanical Bulletin of Academia Sinica 36 (4): 229-234.
- Velez H. and Diaz F. (1985): Onychomycosis due to *saprophytic* fungi. Mycopthologia 91; 87-92.
- Wadhwani K. and Srivastava A. (1985): Some cases of onychomycosis from north India in different working environments. Mycopathologia 92: 149-155.

WHO (1981) The risk to health of microbes in sewage sludge applied to land EURO Reports and studies No. 54. Regional office for Europe, WHO, Copenhagen. pp.10-18. aquaculture. Technical report No. 778. WHO, Geneva 74 p.

- Woolcock J.B., 1991. Microbiology of Animals and Animal Products. Elsevier, New York. pp. 210 – 212.
- WHO(1989): Health guideline for the use of wastewater in agriculture and

تم عزل الفطريات والبكتيريا من عينات مياه المجاري الخام والمخرجات الثانوية والمواد الصلبة (الوحل الجاف) بعد التجفيف المستخدمة في هذه الدراسة من بيئات غذائية مختلفة عند درجة تحضين ٣٧°م للبكتيريا الممرضة و ٢٨°م. وقد تم عزل عدد من البكتيريا الممرضة والمحتملة، وكذلك عدد من الفطريات الممرضة أو التي يحتمل أن تسبب أمراض في ظروف خاصة.

, faecal Streptococcus, Streptococcus pneumonia, Staphylococcus aureus, البكتيريا , faecal Streptococcus, Streptococcus pneumonia, Staphylococcus aureus, actuation a

وعلى بيئة السبرود مع السيكوهيكسامايد عزلت الأنواع الفطرية الآتية :

Aspergillus flavus, A. fumigatus, A. niger, Gibberella fujikuroi and Geotrichium candidum,

وقد عزلت فطريات ممرضة بأعداد مختلفة على هذه البيئة، وهي:

Chrysosporium tropicium C. indicum, C. parvum, Geotrichum candidum, Histoplasma capculatum Microsporum cansi, M. gypseum and M. manginii.

Aspergillus flavus, A. fumigatus, A.niger, Acremonium stictum, terreus, A. versicolor, Cladosporium cladosporoides, C. herbarum, C. oxysporum, Gibberella fujikuroi, Cohliobolules hawaiiensis, Fusarium solani, F. oxysporum, Penicillium chrysogenum, Geotrichium candidum and Scopulariopsis brevecaulis.