FREQUENTLY ISOLATED BACTERIA FROM LACTATING COWS WITH CLINICAL AND SUBCLINICAL MASTITIS IN GHARBIA GOVERNORATE, EGYPT البکتيريا المعزولة فى کثير من حالات التهاب الضرع السريرى وتحت السريرى من الابقار المرضعة بمحافظة الغربية , مصر.

Document Type : Original Article

Abstract

ABSTRACT
This study was carried out on a total number of 122 mixed breed cows (46 clinical and 76 subclinical mastitic cows) aged between 2-8 years old and collected from 17 dairy farms and also single cases from farmers located in different localities in Gharbia, Egypt. Bacteriological culturing revealed CNS isolated from clinical and subclinical cases 28 (60.9%), 19 (25%) respectively, CPS isolated from clinical cases only 9 (19.6%) and E. coli isolated from clinical and subclinical cases 9 (19.6%), 30 (39.5%) respectively. Serological identification of 10 E. coli isolates revealed following serotypes (O26, O111, O114, O125, O146 and O166). Sensitivity test for (CPS) showed that the highest resistance was to amoxicillin 66.7% and the lowest resistance was to Gentamycin and Sulphatrimethoprime 11%, (CNS) showed that the highest resistance was to Oxacillin 46.8% then Kanamycin 8.5% and E. Coli showed that the highest resistance was to Oxacillin 59%, the lowest resistance was to Gentamycin 5.1%, complete susceptibility to Enrofloxacine, Ciprofloxacine and high susceptibility to Gentamycin and Sulphatrimethoprime. Multiplex PCR of (CPS) isolates resulted in all isolates give a positive reaction at 279bp of nuc genes (Staphylococcus aureus) (S. aureus) meanwhile 2 isolates 1.6% (2/122) give a positive reaction at 147bp of mecA genes (methicillin resistance S. aureus) (MRSA). The objective of this study is to isolate and identify the common bacterial isolates from mixed breed mastitic cows, detection the antibiotics sensitivity of the studied bacteria and molecular detection of nuc genes (S. aureus specific primers) and mecA genes (methicillin resistance S. aureus specific primers) in (CPS).
الملخص العربي :
أجريت هذه الدراسة على 122 بقرة من سلالة مختلطة (46 بقرة مصابة بالتهاب الضرع السريرى و76 بقرة مصابة بالتهاب الضرع تحت ألسريري) وتتراوح أعمارهم بين 2-8 سنوات وتم الحصول عليها من 17 مزرعة ألبان وکذلک من حالات مفردة من المزارعين في مناطق مختلفة  في محافظة الغربية بمصر.
کشفت الدراسات البکتيريولوجية عن وجود معزولات المکورات العنقودية (CNS) من الابقار السريرية وتحت السريرية بنسبة 28  (60.8%) و 19 (25%) على التوالى , معزولات المکورات العنقودية (CPS) من الابقار السريرية فقط بنسبة 9 (25%) ثم معزولات الاشريکية القولونية (E. Coli) من الابقار السريرية وتحت السريرية بنسبة 9 (19.6%) و 30 (39.5%) على التوالى.
          کشف التعريف السيرولوجى لعشرة معزولات من البکتيريا الاشريکية القولونية عن وجود .(O146,O125, O114,O166,O111, O26)
أظهر اختبار حساسية المضادات الحيوية لمعزولات البکتيريا العنقودية (CPS) أن أعلى مقاومة کانت للاموکسيسيلين 66.7% واقل مقاومة للجنتاميسين والسلفاترايميثوبريم 11%  ثم المعزولات البکتيرية العنقودية  (CNS) أظهرت أعلى مقاومة للاوکسيسيلين 46.8% و اقل  مقاومة للکاناميسين 8.5%  بينما أظهرت الاشريکية القولونية   (E.coli)أعلى مقاومة للاوکساسيلين 59% واقل مقاومة للجنتاميسين 5.1% وکذلک سجلت نتائج اختبار الحساسية القابلية الکاملة للانروفلوکساسين والسيبروفلوکساسين و حساسية عالية للجنتاميسين والسلفاترايميثوبريم .
أظهر تفاعل البلمرة المتسلسل المتعدد لتسعة معزولات من البکتيريا العنقودية الموجبة لاختبار الکواجيوليز أن جميع المعزولات تعطى تفاعلا ايجابيا عند  جينات البکتيريا العنقودية اوريوس بينما 1.6 % (2/122)  فقط موجبة عند جينات البکتيريا العنقودية اوريوس المقاومة للمسيسيللين .
الهدف من هذه الدراسة هو عزل وتحديد المعزولات البکتيرية الشائعة من الأبقار المصابة بعدوى التهاب الضرع, الکشف عن حساسية المضادات الحيوية للبکتيريا المدروسة والکشف الجزيئي للجينات الخاص بالبکتيريا العنقودية (CPS).

Keywords


Frequently Isolated Bacteria from lactating Cows with Clinical and Subclinical Mastitis in Gharbia Governorate, Egypt

        Fatma M. Abo Zaid1*, Hassan Y. Abd ElHamed2*, El-Sagher O. Ahmed2*,

Amal M. Eid1*, Adel E. A. Mohamed2

1Animal Health Research Institute, Tanta, Egypt, 2Department of Animal Medicine, Faculty of veterinary Medicine, South Valley University, Qena, Egypt.

ABSTRACT

This study was carried out on a total number of 122 mixed breed cows (46 clinical and 76 subclinical mastitic cows) aged between 2-8 years old and collected from 17 dairy farms and also single cases from farmers located in different localities in Gharbia, Egypt. Bacteriological culturing revealed CNS isolated from clinical and subclinical cases 28 (60.9%), 19 (25%) respectively, CPS isolated from clinical cases only 9 (19.6%) and E. coli isolated from clinical and subclinical cases 9 (19.6%), 30 (39.5%) respectively. Serological identification of 10 E. coli isolates revealed following serotypes (O26, O111, O114, O125, O146 and O166). Sensitivity test for (CPS) showed that the highest resistance was to amoxicillin 66.7% and the lowest resistance was to Gentamycin and Sulphatrimethoprime 11%, (CNS) showed that the highest resistance was to Oxacillin 46.8% then Kanamycin 8.5% and E. Coli showed that the highest resistance was to Oxacillin 59%, the lowest resistance was to Gentamycin 5.1%, complete susceptibility to Enrofloxacine, Ciprofloxacine and high susceptibility to Gentamycin and Sulphatrimethoprime. Multiplex PCR of (CPS) isolates resulted in all isolates give a positive reaction at 279bp of nuc genes (Staphylococcus aureus) (S. aureus) meanwhile 2 isolates 1.6% (2/122) give a positive reaction at 147bp of mecA genes (methicillin resistance S. aureus) (MRSA). The objective of this study is to isolate and identify the common bacterial isolates from mixed breed mastitic cows, detection the antibiotics sensitivity of the studied bacteria and molecular detection of nuc genes (S. aureus specific primers) and mecA genes (methicillin resistance S. aureus specific primers) in (CPS).

Key words:Bovine mastitis; E. Coli; CPS; CNS; S. aureus; MRSA; nuc genes; mecA genes.


INTRODUCTION:

Mastitis can be defined as an inflammation of the mammary gland which cause physical, chemical, bacteriological and cytological changes in milk, pathological changes in the udder glandular tissues and can notice effects on the quality and quantity of milk (Amir, 2013).

Its severity can be categorized into clinical, sub-clinical and chronic forms, while its degree is relying on the kind of causative organism, breed, age, immunological health

 

and lactation stage of the infected animal (Yalcin, 2000).

It is mainly caused by microorganisms which usually including gram-negative and gram-positive bacteria, yeasts, algae and mycoplasma (Zadoks et al., 2011). S. aureus is the most widespread and economically important pathogen which causing inflammatory infections in dairy ruminants (Katsuda at al., 2005). S. aureus can reach milk either by direct excretion from udders with clinical or subclinical Staphylococcal mastitis or by environmental contamination during handling of raw milk, so approximately 30-40% of all mastitis cases are associated with S. aureus (Jorgensen et al.,2005).

Coagulase Negative Staphylococcai (CNS) are constantly existing on the udder skin and in teat canals, under a suitable condition they penetrate the galactogenic pathway to the quarter, the pathogenic mechanisms of them can be represented by two parameters which are invasiveness (ability to penetrate the protective barriers, adhere to host cells and to form a biofilm) and toxicity (can produce toxins and enzymes which including proteases and hemolysis) (Bochniarz and Wawron, 2012). E. coli is the prevalent coliform species leading to mastitis infection in dairy animals during parturition and lactation stages by prominent local or systemic clinical symptoms.

It is widely known that animal, environmental and bacterial factors are interdependently and affecting mastitis susceptibility (Quesnell et al., 2012).

Mastitis is the most common frequent reason for using of antimicrobial drugs in dairy herds as antibiotic therapy is a primary instrument in its controlling in lactating and dry cows (Sawant et al., 2005).

The most widely used antibiotics in treatments of bovine mastitis are β-lactams which working by inhibiting cell wall synthesis by the bacterial organism (Kwon et al., 2006).

Mechanism of β-lactams resistance in   Staphylococci include forming of β-lactamases and/or production of low affinity Penicillin binding protein (PBP), identified as methicillin resistance (MR) which prevent therapy of any currently available β-lactam antibiotics and may cause resistance to other classes of antibiotics beside β-lactams among all Staphylococci (Olsen et al., 2006).

Production of a modified form of penicillin binding protein 2A (PBP2) is encoded by the mecA gene (Kilic et al., 2006).

MATERIAL AND METHODS:

     This study carried on 122 mixed breed cows aged between 2-8 years old and including 76 cases of subclinical mastitis and 46 cases of clinical mastitis. These cows selected from Gharbia governorate, Egypt.

        The data involved including age, parity, stage of lactation, udder health monitoring, milking practice and cleanliness of the bedding materials.

    Clinical examinations of selected cows were performed according to (Constable et al., 2014).

    The California Mastitis Test (CMT) was performed for detection of subclinical mastitis according to the manufacturer’s instruction (Mellenberger and Carol, 2000).

    Sampling of milk using standard methods described by (National Mastitis Council ,1999).

    Bacteriological examination of milk samples according to (Qunin et al., 2002).

      While Identification of Staphylococcus and E-Coli spp. according to (Macfaddin., 2000) and (Harley and Prescott, 2007).

    Serological identification of E. coli isolates according to (Kok et al., 1996) at Animal health research institute, El Dokky, Egypt. Using rapid diagnostic E. coli antisera sets (DENKA SEIKEN Co., Japan).Virulence factors for E. coli isolates were detected by hemolytic activity according to (Beutin et al., 1989) and Congo Red (CR) binding test according to (Panigrahy and Yushen, 1990).

    Antibiotic sensitivity test for bacterial isolates according to (Jorgensen and Ferraro,2009).

Penicillin G; P (10 units/disk), Amoxicillin; AML (10μg/disk) and Oxacillin; Ox (1μg/disk) were used to test phenotypic expression of nuc and mecA genes. The following antibiotics were also tested including Enrofloxacin; ENR (5μg /disk), Ciprofloxacin; Cip (5μg/disk), Kanamycin; k (30μg/disk), Gentamycin; CN (10μg/disk), Sulpha-Methoxazole Trimethoprime; SXT (25μg/disk), Oxytetracycline; OT(30μg/disk).

    Multiplex Polymerase Chain Reaction (PCR) for (CPS) isolates were performed according to (Reischl et al., 1994).

    Primers used for PCR amplification were synthesized in Bio Basic Inc. (Canada).  Details of primer sequences, their specific targets, amplicon sizes and references are summarized in Table 1.

 

      Table 1: Primer sequences, references, their specific targets and amplicon sizes

Primer name

Primer sequence 5′-3′

Product size

Specificity

References

16SrRNAf

16SrRNAr

5′-GTA GGT GGC AAG CGTTAT CC 3′

5′- CGC ACA TCA GCG TCA G 3′

228bp

Staphylococcus genus specific primers

Monday and Bohach, 1999

nuc1

nuc2

5′-GCGATTGATGGTGATACGGTT-5′AGCCAAGCCTTGACGAACTAAAGC-3′

279bp

Staphylococcus aureus specific primers

Brakstad et al., 1992

mecA f

mecA r

5′-GTG AAG ATA TAC CAA GTG ATT3′

5′-ATG CGC TAT AGA TTG AAA GGAT 3′

147bp

Methicillin resistant staphylococci specific primers

Zhang et al., 2005

 


RESULTS

   Based on the history, results of clinical examination, clinical signs, isolation and identification of causative pathogens, clinical and subclinical mastitis were diagnosed in the examined cases.

     Table 2 showed bacteriological isolation of 122 milk samples (clinical 46 and subclinical 76) which resulted in CNS isolated from clinical and subclinical 28 (60.9%), 19 (25%) respectively, CPS isolated from clinical cases only 9 (19.6%) and E. coli isolated from clinical and subclinical 9 (19.6%), 30 (39.5%) respectively.

      It was essential to mention that 27 milk samples obtained from clinically healthy cows (subclinical mastitis) were negative for the tested bacteria.

Table 3 showed serological identification of 10 E. coli isolates.

   Table 4 showed virulence factors of all E. Coli isolates including hemolytic and CR activity.

   Table 5 showed sensitivity test of (CPS) isolates in which the highest resistance to amoxicillin (66.7%), lowest resistance to gentamycin and sulphatrimethoprim (11.11%) and complete susceptibility to enrofloxacin and ciprofloxacin antibiotic discs.

    Table 6 showed sensitivity test of (CNS) isolates in which the highest resistance to oxacillin (46.8%) then kanamycin (8.5%) and complete susceptibility to all other tested antibiotic discs.

    Table 7 showed that E. Coli isolates had the highest resistance to oxacillin (59%), lowest resistance to gentamycin (5.1%) and complete susceptibility to enrofloxacin, ciprofloxacin and kanamycin antibiotics.

     Table 8 showed molecular typing of (CPS) isolates.


Table 2: Bacteriological isolation of pathogenic bacteria from mastitic milk samples.

Isolated bacteria

 

Type of mastitis

CNS

CPS

E. Coli

No.

%

No.

%

No.

%

Clinical (N=46)

28

60.9

9

19.6

9

19.6

Subclinical (N=76)

19

25

0

0

30

39.5

 

Table 3: Serological identification of E-Coli isolates. *

Serotypes

Strain

N.

%

O26

Shiga Toxin Producing (STEC)

1

10%

O111

Enterohaemorrhagic

1

10%

O114

Enteropathogenic

1

10%

O125

Enteropathogenic

3

30%

O146

Enteropathogenic

3

30%

O 166

Enterotoxogenic

1

10%

Total

 

10

100%

*(N=10)

Table 4: Virulence factors of E. Coli isolates*

Hemolytic Activity test

Congo Red Binding test

Alpha hemolytic

Beta hemolytic

Positive

%

N.

%

N.

%

3

7.7%

1

2.6%

8

20.5%

*(N=39)

Table 5: Sensitivity test of(CPS) isolates*

Antibiotic tested

Number of phenotypic isolates*

% of resistant phenotypes

Susceptible

 

Intermediate

Resistant

 

 

Penicillin

3

 

1

5

55.6%

Amoxicillin

3

 

0

6

66.7%

Oxacillin

2

 

3

4

44.4%

Gentamycin

7

 

1

1

11%

Enrofloxacin

9

 

0

0

0

Kanamycin

6

 

1

2

22.2%

Sulphatrymethoprim

7

 

1

1

11%

Ciprofloxacin

9

 

0

0

0

*(N=9)

Table 6: Sensitivity test of(CNS) isolates*

Antibiotic tested

Number of phenotypic isolates *

% of resistant phenotypes

Susceptible

 

Intermediate

Resistant

 

 

Penicillin

29

 

18

 

0

0

Amoxicillin

38

 

9

 

0

0

Oxacillin

14

 

11

 

22

46.8%

Gentamycin

36

 

11

 

0

0

Enrofloxacin

38

 

9

 

0

0

Kanamycin

34

 

9

 

4

8.5%

Sulphatrymethoprim

47

 

0

 

0

0

Ciprofloxacin

38

 

9

 

0

0

*(N=47)

Table 7: Sensitivity test of E-Coli isolates*

Antibiotic tested

Number of phenotypic isolates*

%of resistant phenotypes

Susceptible

Intermediate

Resistant

Penicillin

28

0

11

28.2%

Amoxicillin

26

0

13

33.3%

Oxacillin

16

0

23

59%

Gentamycin

32

5

2

5.1%

Enrofloxacin

35

4

0

0

Kanamycin

26

13

0

0

Sulphatrymethoprim

32

2

5

12.8%

Ciprofloxacin

38

1

0

0

*(N=39)

Table 8: Molecular typing of (CPS)isolated from examined samples*

Genes

Coagulase positive Staphylococcus

N.

%

nuc genes(Staphylococus aureus)

9

100%

mecA genes (MRSA)

2

22.2%

*(N=9)

 

 


Figure 1: Multiplex PCR assay of 9 (CPS) isolates for detecting the nuc genes at (279 bp) S. aureus specific primers, 16SrRNA genes at (228bp) Staphylococcus genus specific primers and mecA genes at (147 bp) Methicillin Resistant Staphylococcus specific primers.

M: 100 bp ladder DNA marker, +ve.: mecA positive S. aureus positive control,

-ve.: negative control.

Lanes 1, 2, 4, 6, 7, 9, 10, 11, 14 positives to 16SrRNA and nuc (S.  aureus). Lanes 1, 2, 4, 6, 10, 11, 14 are mecA negative S. aureus isolates. lanes 7&9: mecA positive S. aureus isolates

 

 

 

 

 

DISCUSSION

     Bovine mastitis is the most complicated disease affecting production systems of dairy farms and having both zoonotic and economic significance (Zeryehun et al., 2013).

Precise and periodical diagnosis of bovine mastitis assist us in decreasing its incidence rate so we can reduce its economic costs which would be aggravated with any delay (Viguier et al., 2009).

                Bacteriological isolations revealed CNS which isolated from clinical and subclinical 28 (60.9%), 19 (25%) respectively, CPS isolated from clinical cases only 9 (19.6%) and E. coli isolated from clinical and subclinical 9 (19.6%), 30 (39.5%) respectively. These results are closely related to (Jeykumar et al., 2013) and (Nadeem et al., 2014) and disagree with (Mekibib et al., 2010).

                The high incidence rate of (CNS) meaning increasing of their importance as mastitis pathogen which reported by (Smith. 2001). The present findings revealed high proportion of (CNS) as an important cause of clinical and subclinical mastitis and this agree with (Oliver et al., 2005).

                The variations in the results of the bacterial isolates due to several factors such as the age, parity, breed, stage of lactation, season of the year, udder health monitoring, cleanliness of milking facilities and utensils, udder cleanliness, the milking practice and the body condition score (Constable et al., 2014).

                         E. coli isolates serotyping was done to give information about the most important and prevalent serotypes helping in mastitis occurrence. Our results showed serotypes (O26, O111, O114, O125, O146 and O166). These results showed that amongst the serotyped strains of E. coli there was no dominant serotype. These results are agreeing with (Sayed, 2014).

                         Previous results showed that E. coli mastitis is not caused by a fixed number of particular pathogenic strains, but it is associated with environmental fecal contamination and be multi factorial causes (Rangel and Marin, 2009).

We can use Congo red (CR) agar test as a detective method for E. coli virulence and it also help in differentiation between virulent and a virulent E. coli strains (Sharma et al., 2006).

                CR binding ability showed that 8/39 isolates (20.5%) had CR binding activity. These results are partially related to (Sharma et al., 2006) and (Amira et al., 2013) and disagree with (Zaki et al., 2004).

                E. Coli hemolytic activity revealed Alpha hemolytic 7.7% and beta hemolytic 2.6%. These results are closely agreeing with (Zaki et al., 2004) and (Amira et al., 2013) .

                The antimicrobial studies for mastitis causative pathogens are important because they detect the most suitable antibiotic therapy, decreasing their resistance and reduce the public potential health hazards (Akram et al., 2013).

                The highest resistance of (CPS) isolates was to amoxicillin (66.7%) then oxacillin (44.4%). These results are closely agreeing with (Jagadeeswari et al., 2013).

                The highest resistance of (CNS) was to oxacillin (42.3%) then kanamycin (9.9%). These results are agreeing with (Basappa et al., 2011).

                The highest resistance of E. Coli was to oxacillin (56%) then amoxicillin (36%). These results are agree with (Sumathi et al., 2008) and disagree with (Singh et al., 2018).

                The variability of different pathogens in their response to different antibiotics with the random use of these drugs without testing is the vital reason for   treatment crash. Agar gel diffusion test for antimicrobial drugs must be used to choose the correct therapy, avoiding time waste and heavy costs on owners (Grag, 2001).

                Multiplex PCR revealed that all (CPS) positive for nuc genes (S. aureus) and 22.2% isolates were methicillin resistance S. aureus (MRSA). These results are partially related to (Vanderhaeghen et al., 2010).     

                Results showed that incidence of methicillin resistance among (CPS) and (CNS)were higher than among S. aureus isolates and that declared the importance of both (CPS) and (CNS)as mastitis pathogens. These results are agree with (Luthje et al., 2006).

Conclusion: The findings of this study showed prevalence of the common bacteria causing bovine mastitis in Gharbia governorate, Egypt which included (CPS), (CNS) and E. Coli. Multiplex PCR assay showed that all tested (CPS) were positive to nuc genes (S. aureus) meanwhile mecA genes observed in two isolates only(MRSA). Results of sensitivity test for all bacterial isolates showed that enrofloxacin, ciprofloxacin and gentamycin were the most suitable antibiotics used for bovine mastitis control in the studied area so the antibiotic sensitivity test for mastitis causing bacteria is important to get maximum efficacy of antibiotics which will reduce the development of resistance to antibiotics.

REFERENCES

Akram, N.; Chaudhary, A.; Ahmed, S.; Chuman, M.; Nawaz, G. and Hussain, S. (2013): Isolation of bacteria from mastitis affected bovine milk and their antibiogram. European J. of Veterinary Medicine, 1: 38-46.

Amira, E. L.; Ammar, A. M.; Zaki, E. R.; Norhan, K.; Badea, S. M. and Refai, M. K. (2013): Virulence factors of Escherichia coli isolated from recurrent cases of clinical and subclinical mastitis in buffaloes. International J. of Microbiological Research, 4 (1): 86-94.

Amir, H. A. (2013): Mastitis in housed dairy buffaloes: incidence, treatment against E. coli mastitis. Life Science J., 10 (1): 532-538.

Basappa, B. K.; Sadashiv, S. O.; Mahantesh, M. K. and Rajeshwari, D.S. (2011): Prevalence and antimicrobial susceptibility of Coagulase-Negative Staphylococci isolated from bovine mastitis. Veterinary World, 4 (4): 158 – 161.

Beutin, L.; Montenegro, M. A.; Orskov, I.; Orskov, F.; Prada, J.; Zimmermann, S. and Stephan, R. (1989): Close association of verotoxin (Shiga like toxin) production with enterohaemolysin production in strains of E. coli. J. Clin.Microbiol.,27(11):2559-2564.

Bochniarz, M. and Wawron, W. (2012): Hemolytic and proteolytic activity of coagulase- negative staphylococci isolated from mastitis cows. J. Veterinary Science, 15(1): 61-65.

Brakstad, O.; Aasbakk, G. K. and Maeland, J. A. (1992): Detection of Staphylococcus aureus by polymerase chain amplification of the nuc gene. J. Clin. Microbiol., 30: 1654-1660.

Constable, D. P.; Hinchcliff, W. K.; Done, H. S. and Grunberg, W. (2014): Veterinary Medicine: A text book of the diseases of Cattle, Horses, Sheep, Pigs and Goats. 11th Edn. El servier Ltd, vol.1, pp.:1-28.

Grag, D. N. (2001): Emergence of Bovine mycoplasmal mastitis in India. A round table conference on mastitis (I AAVR). 1-9.

Harley, J. P. and Prescott, L. M. (2007): Laboratory Exercises in Microbiology. 7th ed. McGraw-Hill Higher Education. New York pp.: 630-632.

Jagadeeswari, M.; Hemashenpagam, D. N.; Dhanabalan, R. and Mekala, K. (2013): Prevalence and in vitro antibiogram pattern of different antibiotics against major bovine mastitis pathogens. Inter. J. of pharm. research and bio. sci., 2(2) :112-121.

Jeykumar, M.; Vinodkumar, G.; Bashir, Bt. P. and Krovvidi, S. (2013):

Antibiogram of mastitis pathogens in the milk of crossbred cows in Namakkal district, Tamil Nadu, Vet. World,6(6):354-356.

Jorgensen, H. J.; Mork, T.; Caugant0, D. A.; Kearns, A. and Rørvik, L. M. (2005): Genetic Variation among Staphylococcus aureus Strains from Norwegian Bulk Milk. Environ. Microbiol., 71: 8352-8361.

Jorgensen, H. J. and Ferraro, M.J. (2009): Antimicrobial susceptibility testing: A review of general principles and contemporary practice. Medical microbiol., 49:1749-1755.

Katsuda, K.; Hata, E.; Kobayashi, H.; Kohmoto, M.; Kawashima, K.; Tsunemitsu, H. and Eguchi, M. (2005): Molecular typing of Staphylococcus aureus isolated from bovine mastitic milk on the basis of toxin genes and coagulase gene polymorphisms. Vet. Microbiol., 105: 301-305.

Kilic, A.; Li, H.; Stratton, C. W. and Tang, Y. W. (2006): Antimicrobial susceptibility patterns and Staphylococcal cassette chromosome mec types of, as well as Panton-Valentine Leukocidin occurrence among methicillin- resistant Staphylococcus aureus isolated from children and adult in middle Tennessee. J. Clin.  Microbiol., 44: 4436-4440.

Kok, T.; Worswich, D. and Gowans, E. (1996): Some serological techniques for microbial and viral infections. In Practical Medical Microbiology (Collee, J.; Fraser, A.; Marmion, B. and Simmons, A., eds.) 14th ed., Edinburgh, Churchill Livingstone, UK.

Kwon, N.; Park, K.; Jung, W.; Youn, H.; Lee, Y.; Kim, S.; Bae, W.; Lim, J.; Kim, J.; Hong, S. and Park, Y. (2006): Characteristics of methicillin resistant Staphylococcus aureus isolated from chicken meat and hospitalized dogs in Korea and their epidemiological relatedness. Vet. Microbiol., 117:304-312.

Luthje, P. and Schwarz, S. (2006):  antimicrobial resistance of coagulase negative staphylococci isolated from bovine subclinical mastitis with particular reference to macrolid-lincosamide resistance phenotypes and genotypes. J. Antimicrob. Chemother., 57:966-969.

MacFaddin, J. F. (2000): Biochemical tests for identification of medical bacteria. 3rd ed. Lippincott Williams and Wilkins. USA.

Mekibib, B.; Furgasa, M.; Abunna, F.; Medersa, B. and Regassa, A. (2010): Bovine mastitis: Prevalence, Risk factors and major pathogens in dairy farms of Hotela Town, Central Ethiopia. Veterinary World, 3 (9): 397- 403.

Mellenberger, R. and Carol, J. (2000): Dept. of Animal Sciences, Michigan State University Roth, Dept. of Dairy Science, University of Wisconsin-Madison.

Monday, S. R. and Bohach, G. A. (1999): Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in Staphylococcal isolates. J. Clin. Microbiol., 30: 1654-1660.

 

Nadeem, A.; Azhar, H. C.; Shabbir, A.; Manzoor, A. G.; Ghazala, N. and Sajjad, H. (2014):  Isolation of bacteria from mastitis affected bovine milk and their antibiogram.  Europ. J. of Vet. Med., 2 (1),38-46.

National Mastitis Council (NMC), (1999): Laboratory hand book in bovine mastitis, revised ed. Madson, Wisconsin: Natl Mastitis Counc, Inc., pp., 1-30.

Olsen, J. E.; Chritensen, H. and Aarestrup, F.M. (2006): Diversity and evolution of blaZ from Staphylococci. J. Antimicrob. Chemother., 57: 450-460.

Oliver, S. P.; Gillespie, B. E.; Headrick, S. J.; Lewis, M. J. and Dowlen, H. H. (2005): Prevalence, risk factors and strategies for controlling mastitis in heifers during the peri parturient period. Int. J. Appl. Res. Vet. Med.,3:150-162.

Panigrahy, B. and Yushen, L. (1990): Differentiation of pathogenic and non

pathogenic Escherichia coli isolated from poultry. Avian Dis., 34: 941-943.

Quesnell, R. R.; Klaessig, S.; Watts, J. L. and Schukken, Y. H. (2012): Bovine intramammary Escherichia coli challenge infections in late gestation demonstrate dominant anti-inflammatory immunological response. J. Dairy Sci., 95(1):117-126.

Quinn, P. J.; Carter, M. F.; Markey, B. and Carter, G. R. (2002): Clinical veterinary microbiology microbial diseases, bacterial causes of bovine mastitis (8th Ed.) Mosby: London pp., 465-475.

Rangel, P. and Marin, J. M. (2009): Analysis of Escherichia coli isolated from bovine mastitic milk.  Pesq. Vet. Bras., 29(5):363-368.

Reischl, U.; Pulz, M.; Ehret, W. and Wolf, H. (1994): PCR-based detection of mycobacteria in sputum samples using a simple and reliable DNA extraction protocol. Bio. Techniques., 17: 844-845.

Sawant, A. A.; Sordillo, L. M. and Jayarao, B. M. (2005): A Survey on antibiotic usage in dairy herds in Pennsylvania. J. Dairy Sci.,88: 2991-2999.

Sayed, S. M. (2014): A contribution on Coliforms causing mastitis in cows with reference to serotypes and virulence factors of E. coli isolates. Ass. Uni. Bull.  Environ. Res. (17) :1.

Sharma, K. K.; Soni, S. S. and Meharchandani, S. (2006): Congo red dye test as an indicator test for detection of invasive bovine Escherichia coli – short communication. Veterinarski Arhiv.,76(4):363-366.

Singh, A.; Chhabra, D.; Sikrodia, R.; Shukla, S.; Sharda, R. and Audarya, S. (2018): Isolation of E. Coli from bovine mastitis and their antibiotic sensitivity patterns. Int. j. Curr. Microbiol. app. Sci., 7 (10): 11-18.

Smith, K.L. (2001): World perspectives on mastitis. In: Proceedings of the second international mastitis and milk quality symposium, National Mastitis Council, Madison (WI).

Sumathi, B. R.; Veeregowda, B. M.; and Amitha, R. G. (2008): Prevalence and antibiogram profile of bacterial isolates from clinical bovine mastitis. Vet. World, 1 (8): 237 – 238.

Vanderhaeghen, W.; Cerpentier, T.; Adriaensen, C.; Vicca, J.; Hermans, K. and Butaya, P. (2010): Methicillin resistant Staphylococcus aureus (MRSA) ST398 associated with clinical and subclinical mastitis in Belgian cows. Vet. Microbiol., Doi: 10.1016/j.vet-mic.2009.12.044.

Viguier, C.; Sushrut Arora, S.; Gilmartin, M.; Welbeck, K. and O′Kennedy, R. (2009): Mastitis detection: current trends and future perspectives. Trend in Biotechnology. 27, 486-494.

Yalcin, C. (2000): Cost of mastitis in Scottish dairy herds with low and high sub-clinical mastitis problems. Turkish J. of Vet. Anim. Sci., (24): 465-472.

Zadoks, R.; Middleton, J.; Mcdougall, S.; Katholm, J. and Schukken, Y. (2011): Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. of Mammary Gland Biology and Neoplasia; 16 (4): 357-372.

Zaki, E.R.; Riad, E. M. and Sobhy, N. M. (2004): Correlation between E. coli serotypes isolated from buffalo mastitic milk with different virulence patterns. J.

Egypt. Vet. Med. Assoc., 64: 53-63.

Zeryehun, T.; Aya, T.; and Bayecha, R. (2013): Study on prevalence, bacterial pathogens and associated risk factors of bovine mastitis in small holder dairy farms in and around Addis Ababa, Ethiopia. Journal of Animal& Plant Sciences 23, 50-55.

Zhang, K.; McClure, J. A.; Elsayed, S.T.; Louie, T. and Conly, J. M. (2005):  Novel multiplex PCR assay for characterization and concomitant subtyping of Staphylococcal cassette chromosome mec types І to Ѵ in methicillin resistant Staphylococcus aureus. J. Clin. Microbiol., 43: 5026-5033.



البکتیریا المعزولة فى کثیر من حالات التهاب الضرع السریرى وتحت السریرى من الابقار المرضعة بمحافظة الغربیة , مصر.

د. فاطمة مرغنى طه أبوزید 1*, د. حسن یوسف عبد الحمید2* , د. الصغیر عمران احمد على 2*

د. أمل مصطفى عید 1* , ا.د. عادل السید احمد محمد 2* .

1* معهد بحوث الصحة الحیوانیة , طنطا , مصر .

2*  قسم طب الحیوان , کلیة الطب البیطرى , جامعة جنوب الوادى, قنا, مصر

 

 

الملخص العربی :

أجریت هذه الدراسة على 122 بقرة من سلالة مختلطة (46 بقرة مصابة بالتهاب الضرع السریرى و76 بقرة مصابة بالتهاب الضرع تحت ألسریری) وتتراوح أعمارهم بین 2-8 سنوات وتم الحصول علیها من 17 مزرعة ألبان وکذلک من حالات مفردة من المزارعین فی مناطق مختلفة  فی محافظة الغربیة بمصر.

کشفت الدراسات البکتیریولوجیة عن وجود معزولات المکورات العنقودیة (CNS) من الابقار السریریة وتحت السریریة بنسبة 28  (60.8%) و 19 (25%) على التوالى , معزولات المکورات العنقودیة (CPS) من الابقار السریریة فقط بنسبة 9 (25%) ثم معزولات الاشریکیة القولونیة (E. Coli) من الابقار السریریة وتحت السریریة بنسبة 9 (19.6%) و 30 (39.5%) على التوالى.

          کشف التعریف السیرولوجى لعشرة معزولات من البکتیریا الاشریکیة القولونیة عن وجود .(O146,O125, O114,O166,O111, O26)

أظهر اختبار حساسیة المضادات الحیویة لمعزولات البکتیریا العنقودیة (CPS) أن أعلى مقاومة کانت للاموکسیسیلین 66.7% واقل مقاومة للجنتامیسین والسلفاترایمیثوبریم 11%  ثم المعزولات البکتیریة العنقودیة  (CNS) أظهرت أعلى مقاومة للاوکسیسیلین 46.8% و اقل  مقاومة للکانامیسین 8.5%  بینما أظهرت الاشریکیة القولونیة   (E.coli)أعلى مقاومة للاوکساسیلین 59% واقل مقاومة للجنتامیسین 5.1% وکذلک سجلت نتائج اختبار الحساسیة القابلیة الکاملة للانروفلوکساسین والسیبروفلوکساسین و حساسیة عالیة للجنتامیسین والسلفاترایمیثوبریم .

أظهر تفاعل البلمرة المتسلسل المتعدد لتسعة معزولات من البکتیریا العنقودیة الموجبة لاختبار الکواجیولیز أن جمیع المعزولات تعطى تفاعلا ایجابیا عند  جینات البکتیریا العنقودیة اوریوس بینما 1.6 % (2/122)  فقط موجبة عند جینات البکتیریا العنقودیة اوریوس المقاومة للمسیسیللین .

الهدف من هذه الدراسة هو عزل وتحدید المعزولات البکتیریة الشائعة من الأبقار المصابة بعدوى التهاب الضرع, الکشف عن حساسیة المضادات الحیویة للبکتیریا المدروسة والکشف الجزیئی للجینات الخاص بالبکتیریا العنقودیة (CPS).

REFERENCES
Akram, N.; Chaudhary, A.; Ahmed, S.; Chuman, M.; Nawaz, G. and Hussain, S. (2013): Isolation of bacteria from mastitis affected bovine milk and their antibiogram. European J. of Veterinary Medicine, 1: 38-46.
Amira, E. L.; Ammar, A. M.; Zaki, E. R.; Norhan, K.; Badea, S. M. and Refai, M. K. (2013): Virulence factors of Escherichia coli isolated from recurrent cases of clinical and subclinical mastitis in buffaloes. International J. of Microbiological Research, 4 (1): 86-94.
Amir, H. A. (2013): Mastitis in housed dairy buffaloes: incidence, treatment against E. coli mastitis. Life Science J., 10 (1): 532-538.
Basappa, B. K.; Sadashiv, S. O.; Mahantesh, M. K. and Rajeshwari, D.S. (2011): Prevalence and antimicrobial susceptibility of Coagulase-Negative Staphylococci isolated from bovine mastitis. Veterinary World, 4 (4): 158 – 161.
Beutin, L.; Montenegro, M. A.; Orskov, I.; Orskov, F.; Prada, J.; Zimmermann, S. and Stephan, R. (1989): Close association of verotoxin (Shiga like toxin) production with enterohaemolysin production in strains of E. coli. J. Clin.Microbiol.,27(11):2559-2564.
Bochniarz, M. and Wawron, W. (2012): Hemolytic and proteolytic activity of coagulase- negative staphylococci isolated from mastitis cows. J. Veterinary Science, 15(1): 61-65.
Brakstad, O.; Aasbakk, G. K. and Maeland, J. A. (1992): Detection of Staphylococcus aureus by polymerase chain amplification of the nuc gene. J. Clin. Microbiol., 30: 1654-1660.
Constable, D. P.; Hinchcliff, W. K.; Done, H. S. and Grunberg, W. (2014): Veterinary Medicine: A text book of the diseases of Cattle, Horses, Sheep, Pigs and Goats. 11th Edn. El servier Ltd, vol.1, pp.:1-28.
Grag, D. N. (2001): Emergence of Bovine mycoplasmal mastitis in India. A round table conference on mastitis (I AAVR). 1-9.
Harley, J. P. and Prescott, L. M. (2007): Laboratory Exercises in Microbiology. 7th ed. McGraw-Hill Higher Education. New York pp.: 630-632.
Jagadeeswari, M.; Hemashenpagam, D. N.; Dhanabalan, R. and Mekala, K. (2013): Prevalence and in vitro antibiogram pattern of different antibiotics against major bovine mastitis pathogens. Inter. J. of pharm. research and bio. sci., 2(2) :112-121.
Jeykumar, M.; Vinodkumar, G.; Bashir, Bt. P. and Krovvidi, S. (2013):
Antibiogram of mastitis pathogens in the milk of crossbred cows in Namakkal district, Tamil Nadu, Vet. World,6(6):354-356.
Jorgensen, H. J.; Mork, T.; Caugant0, D. A.; Kearns, A. and Rørvik, L. M. (2005): Genetic Variation among Staphylococcus aureus Strains from Norwegian Bulk Milk. Environ. Microbiol., 71: 8352-8361.
Jorgensen, H. J. and Ferraro, M.J. (2009): Antimicrobial susceptibility testing: A review of general principles and contemporary practice. Medical microbiol., 49:1749-1755.
Katsuda, K.; Hata, E.; Kobayashi, H.; Kohmoto, M.; Kawashima, K.; Tsunemitsu, H. and Eguchi, M. (2005): Molecular typing of Staphylococcus aureus isolated from bovine mastitic milk on the basis of toxin genes and coagulase gene polymorphisms. Vet. Microbiol., 105: 301-305.
Kilic, A.; Li, H.; Stratton, C. W. and Tang, Y. W. (2006): Antimicrobial susceptibility patterns and Staphylococcal cassette chromosome mec types of, as well as Panton-Valentine Leukocidin occurrence among methicillin- resistant Staphylococcus aureus isolated from children and adult in middle Tennessee. J. Clin.  Microbiol., 44: 4436-4440.
Kok, T.; Worswich, D. and Gowans, E. (1996): Some serological techniques for microbial and viral infections. In Practical Medical Microbiology (Collee, J.; Fraser, A.; Marmion, B. and Simmons, A., eds.) 14th ed., Edinburgh, Churchill Livingstone, UK.
Kwon, N.; Park, K.; Jung, W.; Youn, H.; Lee, Y.; Kim, S.; Bae, W.; Lim, J.; Kim, J.; Hong, S. and Park, Y. (2006): Characteristics of methicillin resistant Staphylococcus aureus isolated from chicken meat and hospitalized dogs in Korea and their epidemiological relatedness. Vet. Microbiol., 117:304-312.
Luthje, P. and Schwarz, S. (2006):  antimicrobial resistance of coagulase negative staphylococci isolated from bovine subclinical mastitis with particular reference to macrolid-lincosamide resistance phenotypes and genotypes. J. Antimicrob. Chemother., 57:966-969.
MacFaddin, J. F. (2000): Biochemical tests for identification of medical bacteria. 3rd ed. Lippincott Williams and Wilkins. USA.
Mekibib, B.; Furgasa, M.; Abunna, F.; Medersa, B. and Regassa, A. (2010): Bovine mastitis: Prevalence, Risk factors and major pathogens in dairy farms of Hotela Town, Central Ethiopia. Veterinary World, 3 (9): 397- 403.
Mellenberger, R. and Carol, J. (2000): Dept. of Animal Sciences, Michigan State University Roth, Dept. of Dairy Science, University of Wisconsin-Madison.
Monday, S. R. and Bohach, G. A. (1999): Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in Staphylococcal isolates. J. Clin. Microbiol., 30: 1654-1660.
 
Nadeem, A.; Azhar, H. C.; Shabbir, A.; Manzoor, A. G.; Ghazala, N. and Sajjad, H. (2014):  Isolation of bacteria from mastitis affected bovine milk and their antibiogram.  Europ. J. of Vet. Med., 2 (1),38-46.
National Mastitis Council (NMC), (1999): Laboratory hand book in bovine mastitis, revised ed. Madson, Wisconsin: Natl Mastitis Counc, Inc., pp., 1-30.
Olsen, J. E.; Chritensen, H. and Aarestrup, F.M. (2006): Diversity and evolution of blaZ from Staphylococci. J. Antimicrob. Chemother., 57: 450-460.
Oliver, S. P.; Gillespie, B. E.; Headrick, S. J.; Lewis, M. J. and Dowlen, H. H. (2005): Prevalence, risk factors and strategies for controlling mastitis in heifers during the peri parturient period. Int. J. Appl. Res. Vet. Med.,3:150-162.
Panigrahy, B. and Yushen, L. (1990): Differentiation of pathogenic and non
pathogenic Escherichia coli isolated from poultry. Avian Dis., 34: 941-943.
Quesnell, R. R.; Klaessig, S.; Watts, J. L. and Schukken, Y. H. (2012): Bovine intramammary Escherichia coli challenge infections in late gestation demonstrate dominant anti-inflammatory immunological response. J. Dairy Sci., 95(1):117-126.
Quinn, P. J.; Carter, M. F.; Markey, B. and Carter, G. R. (2002): Clinical veterinary microbiology microbial diseases, bacterial causes of bovine mastitis (8th Ed.) Mosby: London pp., 465-475.
Rangel, P. and Marin, J. M. (2009): Analysis of Escherichia coli isolated from bovine mastitic milk.  Pesq. Vet. Bras., 29(5):363-368.
Reischl, U.; Pulz, M.; Ehret, W. and Wolf, H. (1994): PCR-based detection of mycobacteria in sputum samples using a simple and reliable DNA extraction protocol. Bio. Techniques., 17: 844-845.
Sawant, A. A.; Sordillo, L. M. and Jayarao, B. M. (2005): A Survey on antibiotic usage in dairy herds in Pennsylvania. J. Dairy Sci.,88: 2991-2999.
Sayed, S. M. (2014): A contribution on Coliforms causing mastitis in cows with reference to serotypes and virulence factors of E. coli isolates. Ass. Uni. Bull.  Environ. Res. (17) :1.
Sharma, K. K.; Soni, S. S. and Meharchandani, S. (2006): Congo red dye test as an indicator test for detection of invasive bovine Escherichia coli – short communication. Veterinarski Arhiv.,76(4):363-366.
Singh, A.; Chhabra, D.; Sikrodia, R.; Shukla, S.; Sharda, R. and Audarya, S. (2018): Isolation of E. Coli from bovine mastitis and their antibiotic sensitivity patterns. Int. j. Curr. Microbiol. app. Sci., 7 (10): 11-18.
Smith, K.L. (2001): World perspectives on mastitis. In: Proceedings of the second international mastitis and milk quality symposium, National Mastitis Council, Madison (WI).
Sumathi, B. R.; Veeregowda, B. M.; and Amitha, R. G. (2008): Prevalence and antibiogram profile of bacterial isolates from clinical bovine mastitis. Vet. World, 1 (8): 237 – 238.
Vanderhaeghen, W.; Cerpentier, T.; Adriaensen, C.; Vicca, J.; Hermans, K. and Butaya, P. (2010): Methicillin resistant Staphylococcus aureus (MRSA) ST398 associated with clinical and subclinical mastitis in Belgian cows. Vet. Microbiol., Doi: 10.1016/j.vet-mic.2009.12.044.
Viguier, C.; Sushrut Arora, S.; Gilmartin, M.; Welbeck, K. and O′Kennedy, R. (2009): Mastitis detection: current trends and future perspectives. Trend in Biotechnology. 27, 486-494.
Yalcin, C. (2000): Cost of mastitis in Scottish dairy herds with low and high sub-clinical mastitis problems. Turkish J. of Vet. Anim. Sci., (24): 465-472.
Zadoks, R.; Middleton, J.; Mcdougall, S.; Katholm, J. and Schukken, Y. (2011): Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. of Mammary Gland Biology and Neoplasia; 16 (4): 357-372.
Zaki, E.R.; Riad, E. M. and Sobhy, N. M. (2004): Correlation between E. coli serotypes isolated from buffalo mastitic milk with different virulence patterns. J.